
Adding OpenCL to Eigen with SYCL
Mehdi Goli, Luke Iwanski, Andrew Richards

May 2017

© 2017 Codeplay Software Ltd.2

Agenda
● Eigen

– Expression Tree
– Fusion

● Why SYCL?
● Requirements
● Challenges

– Address Spaces

– Explicit Data Movement

● Benchmarks
● What next?
● Questions?

© 2017 Codeplay Software Ltd.3

Eigen
● C++ based high-performance dense linear

algebra library.
● Modular

– Linear algebra, matrix / vector operations,
geometrical transformations, numerical
solvers and related algorithms

– Tensor (heavily used by TensorFlow)

● Headers only
● Expression templates meta-programming

technique
● Generates compile-time DSL/EDSL based on

the expression tree.
● Currently supports CPU and NVIDIA CUDA

back-end and now SYCL

© 2017 Codeplay Software Ltd.4

A = B * C + D → →

Expression Tree

© 2017 Codeplay Software Ltd.5

Fusion

● Kernel1: C = A*A + B*B

● Kernel2: C1 = A1*A1 + B1*B1

● Kernel3: D = C + C1

● Fused: D = A*A + B*B + A1*A1 + B1*B1

© 2017 Codeplay Software Ltd.6

Why SYCL?

● SYCL is a standard – not “yet another proprietary solution” bound to a specific device family
● SYCL can dispatch device kernels from C++ application, similar to CUDA
● OpenCL 1.2 does not support C++
● OpenCL 2.1 does support C++ templates inside the kernel

● But, the kernel itself cannot be a template, therefore we still need different kernel registration
per type

● Expression of the tree-based kernel fusion is challenging without embedding a custom compiler
● Single-source programming model

● No need to implement separate kernel code for each operation
● Re-use of the existing template code for both host and device is possible
● OpenCL would need reimplementation of the back-end – maintenance overhead

© 2017 Codeplay Software Ltd.7

Requirements

● The back-end must be non-intrusive
● Must re-use the existing code and modules in order to reduce maintenance effort
● Must exploit compile-time template meta-programming techniques in order to reduce

the runtime overhead
● Must be consistent with the existing API design
● Open-Source projects do not like major changes in their existing code base

© 2017 Codeplay Software Ltd.8

Challenge: Address Spaces

● Eigen expression specialisation uses Scalar pointer
● The difference in approaches: raw pointers (CPU/CUDA) VS. accessors and buffers

(SYCL 1.2 /OpenCL 1.2)
● cudaMalloc returns “persistent pointer” that stays the same across kernels
● OpenCL 1.2 cl_mem object may be translated to non-persistent pointers – they might

change across kernels
● OpenCL 2.x solves it via SVM
● Our target is 1.2 with wider range of targeted devices including mobile and

embedded

© 2017 Codeplay Software Ltd.9

A = B * C + D → →

Solution: Address Spaces

© 2017 Codeplay Software Ltd.10

 The terminal nodes are counted recursively at
compile time in order to replace each terminal
node with a place-holder number
 the place-holder number corresponds to the

location of the relevant accessors in the
accessors list

 Depth First Search algorithm is used both to:
 label the leaf nodes (data nodes)
 extract the accessors

Solution: Address Spaces

© 2017 Codeplay Software Ltd.11

 The place-holder tree is recursively traversed in order to:
 Re-instantiate the expression tree on the SYCL device

 The host data pointer in the leaf node is replaced with
the corresponding accessors from the accessors list

A’

B’ C’

D’

Solution: Address Spaces

© 2017 Codeplay Software Ltd.12

Challenge: Explicit Data Movement

● SYCL programming model is based on implicit data movement, but Eigen has its own
data movement interface. These two approaches conflict.

● Eigen's device class provides its own pluggable scheduler for higher-level applications
● Each device can specify its interface - C-style design – methods:
● allocateMemory, deallocateMemory, memcpy, memcpyHostToDevice,

memcpyDeviceToHost, memset
● Pointer is void and independent from the data type

© 2017 Codeplay Software Ltd.13

Solution: Explicit Data Movement

● On the host side a buffer is created for each host pointer
● The buffer life time is coupled with that of the SYCL device instead of the

expressions
● All the interface functions explicitly manipulate the corresponding SYCL buffer

© 2017 Codeplay Software Ltd.14

Intel(R) Core(TM) i7-6700K CPU 4.00GHz VS AMD R9 Nano

© 2017 Codeplay Software Ltd.15

What next?

● The current version of Eigen is the initial release of the SYCL back-end.

● Next steps are optimisation improvements and vectorisation

● We’ll keep you posted!

© 2017 Codeplay Software Ltd.16

Thanks!
Questions?

luke@codeplay.com

https://sycl.tech
https://bitbucket.org/mehdi_goli/opencl

mailto:luke@codeplay.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

