Experimenting with SYCL
single-source post-modern C++ on Xilinx FPGA
Ronan Keryell & Lin-Ya Yu
Xilinx Research Labs
IWOCL DHPCC 2018/05/14
Deconstructivism in (hardware) architecture

Typical modern MPSoC: Xilinx Zynq UltraScale+ MPSoC: All Programmable...
Deconstructivism in post-modern architecture (for artistic reasons)
FPGA: extreme deconstructivism in (hardware) architecture

¿ How to program this ?
Pick a language for unified heterogeneous computing?

- Entry cost

- There are thousands of dead parallel languages...

- Exit cost

- Use standard solutions with open source implementations
Khronos standards for heterogeneous systems

Connecting Software to Silicon

3D for the Web
- Real-time apps and games in-browser
- Efficiently delivering runtime 3D assets

Vision and Neural Networks
- Tracking and odometry
- Scene analysis/understanding
- Neural Network inferencing

Parallel Computation
- Machine Learning acceleration
- Embedded vision processing
- High Performance Computing (HPC)

Real-time 2D/3D
- Virtual and Augmented Reality
- Cross-platform gaming and UI
 - CG Visual Effects
 - CAD and Product Design
 - Safety-critical displays

© Copyright 2018 Xilinx
¿ And what about post-modern C++ ?
Python/Modern C++/Old C++

Python 3.6

```python
v = [1, 2, 3, 5, 7]
for e in v:
    print(e)
```

C++03

```cpp
std::vector v{1, 2, 3, 5, 7};
for (std::vector<int>::iterator e = v.begin(); e != v.end(); ++e)
    std::cout << *e << std::endl;
```

C++17

```cpp
std::vector v{1, 2, 3, 5, 7};
for (auto e : v)
    std::cout << e << std::endl;
```
Back to Python...

Python 3.x (interpreted):

```python
def add(x, y):
    return x + y

print(add(2, 3))  # Output: 5
print(add("2", "3"))  # Output: 23
print(add(2, "Boom"))  # Fails at run-time :-(
```

© Copyright 2018 Xilinx
Modern C++ : like Python but with speed and type safety

Python 3.x (interpreted):

```python
def add(x, y):
    return x + y

print(add(2, 3))      # Output: 5
print(add('2', '3'))  # Output: 23
print(add(2, 'Boom')) # Fails at run-time :-(
```

Same in C++14 but compiled + static compile-time type-checking:

```cpp
auto add = [] (auto x, auto y) { return x + y; };
std::cout << add(2, 3) << std::endl;        // 5
std::cout << add("2"s, "3"s) << std::endl; // 23
std::cout << add(2, "Boom"s) << std::endl; // Does not compile :-(
```

Automatic type inference for terse generic programming and type safety

- Without `template` keyword!
#include <iostream>
#include <string>

using namespace std::string_literals;

// Define an adder on anything.
// Use new C++14 generic variadic lambda syntax
auto add = [] (auto... args) {
 // Use new C++17 operator folding syntax
 return (... + args);
};

int main() {
 std::cout << "The result is: " << add(1, 2.5, 0xDeadBeefULL) << std::endl;
 std::cout << "The result is: " << add("begin"s, "end"s) << std::endl;
}

▷ Terse generic programming and type safety
 - Without template keyword!
Very successful & ubiquitous language

Interoperability: seamless interaction with embedded world, libraries, OS...

2-line description by Bjarne Stroustrup
- Direct mapping to hardware
- Zero-overhead abstraction

⇒ Unique existing position in embedded system to control the full stack!!!

Full-stack ≡ combine both low-level aspects with high-level programming
- Pay only for what you need

Open-source production-grade compilers (GCC & Clang/LLVM) & tools

Classes can be used to define Domain Specific Embedded Language (DSEL)

Not directly targeting FPGA, GPU, DSP...
- But extensible through classes (⇒ DSEL)
Matrix addition with producer/consumer tasks in SYCL

```cpp
#include <CL/sycl.hpp>
#include <iostream>

using namespace cl::sycl;

const expr size_t N = 2000;
const expr size_t M = 3000;

int main() {
    // By sticking all the SYCL work in a {} block, we ensure
    // all SYCL tasks must complete before exiting the block

    // Create a queue to work on default device
    queue q;
    // Create some 2D buffers of float for our matrices
    buffer< double, 2> a{( N, M )};
    buffer< double, 2> b{( N, M )};
    buffer< double, 2> c{( N, M )};
    // Launch a first asynchronous kernel to initialize a
    q.submit([&](auto &cgh) {
        // The kernel write a, so get a write accessor on it
        auto A = a.get_access<access::mode::read>(cgh);
        // Enqueue parallel kernel on a N*M 2D iteration space
cgh.parallel_for<class init_a>{{ N, M }},
            [=](auto index) {
                A[index] = index[0]*2 + index[1];
            });
    });
    // Launch an asynchronous kernel to initialize b
    q.submit([&](auto &cgh) {
        // The kernel write b, so get a write accessor on it
        auto B = b.get_access<access::mode::read>(cgh);
        // Enqueue a parallel kernel on a N*M 2D iteration space
cgh.parallel_for<class init_b>{{ N, M }},
            [=](auto index) {
                B[index] = index[0]*2014 + index[1]*42;
            });
    });
    // Launch asynchronous kernel to compute matrix addition c = a + b
    q.submit([&](auto &cgh) {
        // In the kernel a and b are read, but c is written
        auto A = a.get_access<access::mode::write>(cgh);
        auto B = b.get_access<access::mode::write>(cgh);
        auto C = c.get_access<access::mode::write>(cgh);
        // Enqueue a parallel kernel on a N*M 2D iteration space
cgh.parallel_for<class matrix_add>{{ N, M }},
            [=](auto index) {
            });
    });

    // Compare the result to the analytic value
    if ( C[i][j] != i*(2 + 2014) + j*(1 + 42) ) {
        std::cout << "Wrong value " << C[i][j] << " on element "
                  << i << ' ' << j << std::endl;
        exit(-1);
    }
    std::cout << "Good computation!" << std::endl;
    return 0;

    // Type-safety & genericity
    // - No type definition required inside kernels!
    // Automatic data-transfers & compute overlap
```

© Copyright 2018 Xilinx
Modern C++ features available for OpenCL
- Builds on the features of C++11, with additional support for C++14 and C++17
- Enables ISO C++17 Parallel STL programs to be accelerated on OpenCL devices
- Simplifies the porting of existing templated C++ Libraries and frameworks, i.e., Eigen, TensorFlow......

Generic heterogeneous computing model
- On CPUs, GPUs, FPGAs......
- Hierarchical parallelism

Portability across platforms and compilers

Single source programming model
- Better type safety
- Simpler and cleaner code
- Compiled host and device code

Asynchronous task graph
- Describes implicitly with kernel tasks using buffers through accessors
- Automatic overlap kernel executions and communications

Only Queues needed to direct computations on devices
- Runtime handles multiple platforms, devices, and context

Provides the full OpenCL feature set

Interoperability with multiple languages
- OpenCL, OpenGL®, Vulkan®, OpenVX™, DirectX, and other vendor APIs, i.e., HLS C++ & RTL Xilinx FPGA kernels!

Host fall-back
- Easily develops and debugs applications on the host without a device
- No specific compiler needed for experimenting on host

SYCL 1.2.1 = Pure C++ based DSEL
SYCL implementations
Known implementations of SYCL

- **ComputeCpp by Codeplay** https://www.codeplay.com/products/computecpp
 - Most advanced SYCL 1.2.1 implementation, almost CTS compliant
 - Outlining compiler generating SPIR
 - Run on any OpenCL device and CPU, also prototype to Vulkan
 - Can run TensorFlow SYCL, Parallel STL, VisionCpp, SYCL BLAS…

- **sycl-gtx** https://github.com/ProGTX/sycl-gtx
 - Open source
 - No (outlining) compiler → use some macros with different syntax

- **triSYCL** https://github.com/triSYCL/triSYCL
triSYCL

- Open Source SYCL 1.2.1/2.2
- Uses C++17 templated classes
- Used by Khronos to define the SYCL and OpenCL C++ standard
 - Languages are now too complex to be defined without implementing...
- On-going implementation started at AMD and now led by Xilinx
- https://github.com/triSYCL/triSYCL
- OpenMP for host parallelism
- Boost.Compute for OpenCL interaction
- Prototype of device compiler for Xilinx FPGA
#include <CL/sycl.hpp>

```cpp
q.submit([&](auto &cgh) {
    // The kernel write a, so get a write accessor on it
    auto A = a.get_access<access::mode::write>(cgh);
    // Enqueue parallel kernel on a N*M 2D iteration space
    cgh.parallel_for<class init_a>({N, M}, [=](auto index) {
        A[index] = index[0]*2 + index[1];
    });
});
```

C++ SYCL

Unmodified host compiler (gcc/clang/vs/icc)

OpenMP CPU executable

For OpenCL interoperability

libOpenCL.so

Clang/LLVM Host & kernel caller

OpenMP CPU executable

kernels.bin

Vendor OpenCL device compiler

SPIR 2.0 "de facto"

Device Compiler Runtime

OpenCL interoperability (Boost.Compute)

C++17 & OpenMP & Boost

SYCL runtime

© Copyright 2018 Xilinx
Low-level view of the device compiler workflow

- Modified Clang/LLVM 3.9
- Move to Clang/LLVM 7.0
 - Updated PoCL to support 7.0 version
- Makefile to control the compilation for now
```
#include <CL/sycl.hpp>
#include <iostream>
#include <numeric>
#include <boost/test/minimal.hpp>

using namespace cl::sycl;

constexpr size_t N = 300;
using Type = int;

int test_main(int argc, char *argv[]) {
    buffer<Type> a { N }, b { N }, c { N };
    { auto a_b = b.get_access<access::mode::discard_write>();
      // Initialize buffer with increasing numbers starting at 0
      std::iota(a_b.begin(), a_b.end(), 0);
    }
    { auto a_c = c.get_access<access::mode::discard_write>();
      // Initialize buffer with increasing numbers starting at 5
      std::iota(a_c.begin(), a_c.end(), 5);
    }

    queue q { default_selector {} };

    // Launch a kernel to do the summation
    q.submit([&] (handler &cgh) {
      // Get access to the data
      auto a_a = a.get_access<access::mode::discard_write>(cgh);
      auto a_b = b.get_access<access::mode::read>(cgh);
      auto a_c = c.get_access<access::mode::read>(cgh);

      // A typical FPGA-style pipelined kernel
      cgh.single_task<class add>({=, 
        d_a = drt::accessor<decltype(a_a)>{ a_a },
        d_b = drt::accessor<decltype(a_b)>{ a_b },
        d_c = drt::accessor<decltype(a_c)>{ a_c } }) {
        for (unsigned int i = 0 ; i < N; ++i)
          d_a[i] = d_b[i] + d_c[i];
      });
    });

    // Verify the result
    auto a_a = a.get_access<access::mode::read>();
    for (unsigned int i = 0 ; i < a.get_count(); ++i)
      BOOST_CHECK(a_a[i] == 5 + 2*i);

    return 0;
}
```
SPIR 2.0 “de facto” output with Clang 3.9.1

using: ModuleID = 'device_compiler/single_task_vector_add_drt.kernel.bc'

source_filename = "device_compiler/single_task_vector_add_drt.cpp"

target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-s128"

target triple = "spir64"

declare i32 @__gxx_personality_v0(...)

; Function Attrs: noline norecurse nounwind uwtable
define spir_kernel void @TRISYCL_kernel_0(i32 addrspace()*) %f.0.0.0.val, i32 addrspace()* %f.0.1.0.val, i32 addrspace()* %f.0.2.0.val) unnamed_addr #1 !kernel_arg_access_qual 3 !kernel_arg_base_type 14 !kernel_arg_type 14 !kernel_arg_type_qual 15 !kernel_arg_access_qual 16 (!llvm.ident = !(()

entry:
 br label %for.body.i

for.body.i:
 ; preds = %for.body.i, %entry
 %indvars.iv.i = phi i64 [0, %entry], [%indvars.iv.next.i, %for.body.i]
 %arrayidx.i.i = getelementptr inbounds i32, i32 addrspace(1) * %f.0.0.0.val, i64 %indvars.iv.i
 %0 = load i32, i32 addrspace(1) * %arrayidx.i.i, align 4, !tbaa !
 %arrayidx.i.15.i = getelementptr inbounds i32, i32 addrspace(1) * %f.0.2.0.val, i64 %indvars.iv.i
 %1 = load i32, i32 addrspace(1) * %arrayidx.i.15.i, align 4, !tbaa !
 %add.i.i = add nsw i32 %1, %0
 %arrayidx.i.13.i = getelementptr inbounds i32, i32 addrspace(1) * %f.0.0.0.val, i64 %indvars.iv.i
 store i32 %add.i.i, i32 addrspace(1) * %arrayidx.i.13.i, align 4, !tbaa !
 %indvars.iv.next.i = add nsw i64 %indvars.iv.i, 1
 %exitcond.i = icmp eq i64 %indvars.iv.next.i, 300
 br i1 %exitcond.i, label %"_Z59test_mainiFPcENK3S_lclERN2cl4sycl7handlerEENKUlvE_clEv.exit": ; preds = %for.body.i
 ret void

attributes #0 = { noline norecurse nounwind uwtable "disable-tail-calls"="false" "less-precise-fpmath"="false" "no-frame-pointer-elim"="false" "no-infns-fp-math"="false" "no-jump-tables"="false" "no-nans-fp-math"="false" "no-signed-zeros-fp-math"="false" "stack-protector-buffer-size"="8" "target-cpu"="x86-64" "target-features"="+fxsr,+mmx,+sse,+sse2,+x87" "unsafe-fp-math"="false" "use-soft-float"="false" }

)!opencl.spir.version = !({1})
!opencl.ocl.version = !({12})

!0 = !(["clang version 3.9.1 "])
After Xilinx SDx 2017.2 xocc ingestion...
After Xilinx SDx 2017.2 xocc ingestion... FPGA layout!
FPGA-specific features and optimizations
Optimize for 1 element work-group

Current device implementation focused on FPGA...

Typical use case on FPGA

– No concept of PE in CU… Everything can be generated
– Typical application with only 1 work-group and 1 work-item
 • Any loop has to be explicitly added
 • Avoid OpenCL work-item offset overhead too…
– triSYCL runtime generates 1 work-item per work-group + software work-group implementation in it
 • Better control

Now generates reqd_work_group_size(1, 1, 1)

• New LLVM pass -reqd-workgroup-size-1
• Add metadata for work-group of size (1,1,1) in device compiler to reduce resources on device

```c
; Function Attrs: noinline nounwind uwtable
define spir_kernel void @TRISYCL_kernel_0(i32 addrspace(1)* %f.0.0.0.val, i32 addrspace(1)* %f.0.1.0.val) unnamed_addr #1 !kernel_arg_addrspace !3 !kernel_arg_type !4 !kernel_arg_base_type !4 !kernel_arg_type_qual !5 !kernel_arg_access_qual !6 !reqd_work_group_size !7 { !7 = ![i32 1, i32 1, i32 1]}
```
Let’s try some SYCL vendor extensions...

- SYCL reserves `cl::sycl::vendor` namespace for some `vendor`

- Why not `cl::sycl::vendor::xilinx` to experiment with FPGA extensions?
Pipelining loops on FPGA

- Loop instructions sequentially executed by default
 - Loop iteration starts only after last operation from previous iteration
 - Sequential pessimism → idle hardware and loss of performance 😞

→ Use loop pipelining for more parallelism

Efficiency measure in hardware realm: Initiation Interval (II)
- Clock cycles between the starting times of consecutive loop iterations
- II can be 1 if no dependency and short operations
Decorating code for FPGA pipelining in triSYCL

Use native C++ construct instead of alien #pragma or attribute (vendor OpenCL or HLS C++…)

/** Execute loops in a pipelined manner

A loop with pipeline mode processes a new input every clock cycle. This allows the operations of different iterations of the loop to be executed in a concurrent manner to reduce latency.

\param[in] f is a function with an innermost loop to be executed in a pipeline way.
*/
auto pipeline = [](auto functor) noexcept {
 /* SSDM instruction is inserted before the argument functor to guide xocc to do pipeline. */
 _ssdm_op_SpecPipeline(1, 1, 0, 0, "");
 functor();
};

#ifdef TRISYCL_DEVICE
extern "C" {
 /// SSDM Intrinsics: dataflow operation
 void _ssdm_op_SpecDataflowPipeline(...) __attribute__((nothrow, noline, weak));
 /// SSDM Intrinsics: pipeline operation
 void _ssdm_op_SpecPipeline(...) __attribute__((nothrow, noline, weak));
 /// SSDM Intrinsics: array partition operation
 void _ssdm_SpecArrayPartition(...) __attribute__((nothrow, noline, weak));
}
#else
 /* If not on device, just ignore the intrinsics as defining them as empty variadic macros replaced by an empty do-while to avoid some warning when compiling (and used in an if branch */
#define _ssdm_op_SpecDataflowPipeline(...) do { } while (0)
#define _ssdm_op_SpecPipeline(...) do { } while (0)
#define _ssdm_SpecArrayPartition(...) do { } while (0)
#endif

Compatible with metaprogramming
No need for specific parser/tool-chain!

– Just use lambda + intrinsics! ☺
Dataflow optimization on FPGA

On CPU
- Functions are executed sequentially

On FPGA
- Functions are implemented in hardware…
- They coexist!

Possible to execute them in parallel! 😊
Even better when in a loop

Dataflow execution mode
- Each function scheduled as soon as data is available
- Using FIFOs to forward data
Decorating code for dataflow execution in triSYCL

cgh.single_task<class add>{{
 d_a = drt::accessor<decltype(a_a)>({ a_a },
 d_b = drt::accessor<decltype(a_b)>({ a_b })
 |
 int buffer_in[BLOCK_SIZE];
 int buffer_out[BLOCK_SIZE];
 vendor::xilinx::dataflow({ }) {
 readInput(buffer_in, d_b);
 compute(buffer_in, buffer_out);
 writeOutput(buffer_out, d_a);
 };
};
/** Apply dataflow execution on functions or loops

With this mode, Xilinx tools analyze the dataflow dependencies between sequential functions or loops and create channels (based on ping-pong RAMs or FIFOs) that allow consumer functions or loops to start operation before the producer functions or loops have completed.

This allows functions or loops to operate in parallel, which decreases latency and improves the throughput.
\param[in] f is a function that functions or loops in f will be executed in a dataflow manner.
*/
auto dataflow = [] (auto functor) noexcept {
 /* SSDM instruction is inserted before the argument functor to guide xocc to do dataflow. */
 _ssdm_op_SpecDataflowPipeline(-1, "");
 functor();
};
#endif

Use native C++ construct instead of alien \#pragma or attributes (vendor OpenCL or HLS C++…)

#ifdef TRISYCL_DEVICE
extern "C" {
 /// SSDM Intrinsics: dataflow operation
 void _ssdm_op_SpecDataflowPipeline(...) __attribute__((nothrow, noline, weak));
 /// SSDM Intrinsics: pipeline operation
 void _ssdm_op_SpecPipeline(...) __attribute__((nothrow, noline, weak));
 /// SSDM Intrinsics: array partition operation
 void _ssdm_SPECArrayPartition(...) __attribute__((nothrow, noline, weak));
} #else
 /* If not on device, just ignore the intrinsics as defining them as empty variadic macros replaced by an empty do-while to avoid some warning when compiling (and used in an if branch */
 #define _ssdm_op_SpecDataflowPipeline(...) do { } while (0)
 #define _ssdm_op_SpecPipeline(...) do { } while (0)
 #define _ssdm_SPECArrayPartition(...) do { } while (0)
#endif

compatible with metaprogramming

No need for specific parser/tool-chain!

– Just use lambda + intrinsics! 😊
Another motivation for single-source feature...

Limitations of OpenCL pointed for example by

- “A Case for Better Integration of Host and Target Compilation When Using OpenCL for FPGAs.”
 FPL/FSP 2017 (27th International Conference on Field-Programmable Logic and Applications / Workhop on FPGAs for Software Programmers)

“Major Field-Programmable Gate Array (FPGA) vendors, such as Intel and Xilinx, provide toolchains for compiling Open Computing Language (OpenCL) to FPGAs. However, the separate host and device compilation approach advocated by OpenCL hides compiler optimization opportunities that can dramatically improve FPGA performance. This paper demonstrates the advantages of combined host and device compilation for OpenCL on FPGAs by presenting a series of transformations that require inter-compiler communication.”

Single-source brings more optimization

Kernel code optimized according to host parameter value or data type
- A host constant scalar can be inlined into the kernel
 - Save one API call to send the parameter to the kernel
- A host constant array/tensor can be inlined into the kernel
 - Save one API call to send the parameter to the kernel
 - Replace memory access by direct constant computation
- Dead-code elimination
- ...

Single-source allows kernel fusion with (manual) metaprogramming
- Kernel fusion heavily used in TensorFlow for example
 ➔ Kernel fusion leads to better performance by reducing the launch & memory overhead

➔ Can lead to better performance compared to split-source (OpenCL, HLS C/C++ ...)
```cpp
#include <CL/sycl.hpp>
#include <iostream>
#include <numeric>
#include <boost/test/minimal.hpp>

using namespace cl::sycl;

constexpr size_t NUM_ROWS = 64;
constexpr size_t ELE_PER_ROW = 64;
constexpr size_t BLOCK_SIZE = NUM_ROWS * ELE_PER_ROW;
using Type = int;

template <typename T, typename U>
void readInput(T *buffer_in, const U &d_b) {
    for (int i = 0; i < NUM_ROWS; ++i)
        for (int j = 0; j < ELE_PER_ROW; ++j)
            xilinx::pipeline[]{
                buffer_in[ELE_PER_ROW*i + j] = d_b[ELE_PER_ROW*i + j];
            };
}

int test_main(int argc, char *argv[]) {
    constexpr int alpha = 3;
    buffer<Type> a { BLOCK_SIZE };
    buffer<Type> b { BLOCK_SIZE };
    ... // Initialize buffer with increasing numbers starting at 0
    auto a_b = b.get_access<access::mode::discard_write>();
    std::iota(a_b.begin(), a_b.end(), 0);
    ... // Construct the queue from the default OpenCL one.
    queue q { default_selector {} };
    // Launch a kernel to do the summation
    q.submit[]{(handler &cgh) {
        // Get access to the data
        auto a_a = a.get_access<access::mode::discard_write>(cgh);
        auto a_b = b.get_access<access::mode::read>(cgh);
        // A typical FPGA-style pipelined kernel
        cgh.single_task<class add>{[=, 
            d_a = drt::accessor<decltype(a_a)> { a_a },
            d_b = drt::accessor<decltype(a_b)> { a_b } } {
        ...
            xilinx::dataflow[]{
                readInput(buffer_in, d_b);
                compute(buffer_in, buffer_out, alpha);
                writeOutput(buffer_out, d_a);
            };
        }
    }
    ...}
```

Single source SYCL C++ syntax summary

- OpenCL C → SYCL C++
- 4+ files → 1 file
- 250+ lines → 98 lines
- Template functions, even kernels make things much more easy
 - Reuse the code!
- `constexpr` variables
 - Let compiler do the global host-device optimization for you!
Hardware & Software testing context

- CPU (Intel core i7-6700)
- FPGA (ADM-PCIE-7V3)
- Linux Ubuntu 17.04
- triSYCL device compiler using Clang/LLVM 3.9
- 2017.2 Xilinx xocc compiler using Clang/LLVM 3.1
- 2017.2 Xilinx xocc compiler using Clang/LLVM 3.9
- 2017.4 Xilinx xocc compiler using Clang/LLVM 3.1
- 2017.4 Xilinx xocc compiler using Clang/LLVM 3.9
- Xilinx SDx OpenCL runtime 2017.2

Experiments:

- triSYCL (optimized)
 - Single-source triSYCL on FPGA with Xilinx-specific optimizations
- triSYCL (non optimized)
 - Single-source triSYCL on FPGA
- HLS C++ (optimized) as built-in OpenCL kernel
 - Xilinx HLS C++ on FPGA with Xilinx-specific optimizations
- HLS C++ (non optimized) as built-in OpenCL kernel
 - Xilinx HLS C++ on FPGA
- OpenCL (optimized)
 - Targeting Xilinx OpenCL on FPGA with Xilinx-specific optimizations
- OpenCL (non optimized)
 - Targeting Xilinx OpenCL on FPGA
Performance on FPGA

Read/Write row of 2D Array

Kernel Execution Time (LOG4 scale)

November 2017…

February 2018

d: dataflow p: pipelining no opt: non optimized
Partitioning memories

- In FPGA world, even memory is configurable!

- Example of array with 16 elements…

Cyclic Partitioning
- Each array element distributed to physical memory banks in order and cyclically
- Banks accessed in parallel → improved bandwidth
- Reduce latency for pipelined sequential accesses

Block Partitioning
- Each array element distributed to physical memory banks by block and in order
- Banks accessed in parallel → improved bandwidth
- Reduce latency for pipelined accesses with some distribution

Complete Partitioning
- Extreme distribution
- Extreme bandwidth
- Low latency
partition_array class in triSYCL use case

// A typical FPGA-style pipelined kernel
cgh.single_task<
class mat_mult>([=] {
 // Cyclic Partition for A as matrix multiplication needs row-wise parallel access
 xilinx::partition_array<Type, BLOCK_SIZE,
 xilinx::partition::cyclic<MAX_DIM>> A;
 // Block Partition for B as matrix multiplication needs column-wise parallel access
 xilinx::partition_array<Type, BLOCK_SIZE,
 xilinx::partition::block<MAX_DIM>> B;
 xilinx::partition_array<Type, BLOCK_SIZE> C;
 ...
});

int A[MAX_DIM * MAX_DIM];
int B[MAX_DIM * MAX_DIM];
int C[MAX_DIM * MAX_DIM];

//Cyclic Partition for A as matrix multiplication needs row-wise parallel access
#pragma HLS ARRAY_PARTITION variable=A dim=1 cyclic factor=64
//Block Partition for B as matrix multiplication needs column-wise parallel access
#pragma HLS ARRAY_PARTITION variable=B dim=1 block factor=64 ...

Xilinx HLS C++
Performance on FPGA

Array Block and Cyclic Partitioning with Matrix Multiplication

Kernel Execution Time (LOG4 scale)

HLS C++ (a+p)
OpenCL (a+p)
OpenCL (a+p)
triSYCL (a+p)
HLS C++ (no opt.)
OpenCL (no opt.)
OpenCL (no opt.)
triSYCL (no opt.)

clang/llvm 3.1
clang/llvm 3.1
clang/llvm 3.9
clang/llvm 3.9
clang/llvm 3.1
clang/llvm 3.1
clang/llvm 3.1
clang/llvm 3.9

a: array partition p: pipelining no opt: non optimized
Conclusion
Conclusion: do it the standard way!

- C++ is used by millions of programmers and billions of end-users
 - Runs the world infrastructure!
 - 2018 Draper prize: Bjarne Stroustrup, for conceptualizing and developing the C++ programming language

- Real final applications for embedded systems:
 - Crazily optimized both on hosts and accelerators
 - Need to finely control even more heterogeneity in the future…

- Single-source & system-wide C++ Language is compelling for the full application

- SYCL can cope with FPGA extensions for better control and performance
 - Pipelining, data-flow execution, fixed-point & arbitrary precision

- Pure C++ → easy implementation & CPU emulation

- SYCL can target full stack in a modern MP-SoC
 - Seamless integration of CPU, GPU, OpenAMP, MicroBlaze, accelerators… Not only OpenCL
And now we have a mascot...

Thanks to Dominic Agoro-Ombaka during Khronos F2F Montréal ☺ !
Bonus slides
Generic adder in 25 lines of SYCL & C++17

```cpp
auto generic_adder = [] (auto... inputs) {
    auto a = boost::hana::make_tuple(buffer<typename decltype(inputs)::value_type>
        { std::begin(inputs),
          std::end(inputs) }...);
    auto compute = [] (auto args) {
        // f(...f(f(f(x1, x2), x3), x4) ...,
        //  xn)
        return boost::hana::fold_left(args, [] (auto x, auto y) { return x + y; });
    }
    auto size = a[0].get_count();
    auto pseudo_result = compute(boost::hana::make_tuple(*std::begin(inputs)...));
    using return_value_type = decltype(pseudo_result);
    buffer<return_value_type> output { size };
    queue {}.submit([&] (handler& cgh) {
        auto ka = boost::hana::transform(a, [&,] (auto b) {
            return b.template get_access<access::mode::read>(cgh);
        });
        auto ko = output.template get_access<access::mode::discard_write>(cgh);

        cgh.parallel_for<class gen_add>(size, [=] (id<> i) {
            auto operands = boost::hana::transform(ka, [&,] (auto acc) {
                return acc[i];
            });
            ko[i] = compute(operands);
        });
    });

    return output.template get_access<access::mode::read_write>();
};

int main() {
    std::vector<int> u { 1, 2, 3 };
    std::vector<float> v { 5, 6, 7 };  
    for (auto e : generic_adder(u, v))
        std::cout << e << ' ';

    std::cout << std::endl;
    std::vector<double> a { 1, 2.5, 3.25, 10.125 };
    std::set<char> b { 5, 6, 7, 2 };
    std::list<float> c { -55, 6.5, -7.5, 0 };
    for (auto e : generic_adder(a, b, c))
        std::cout << e << ' ';

    std::cout << std::endl;
    return 0;
}
```

6 8 10
-52 14 1.75 17.125
auto generic_executor = [](auto op, auto... inputs) {
 auto a = boost::hana::make_tuple(buffer<typename decltype(inputs)::value_type>
 { std::begin(inputs),
 std::end(inputs) ... });

 auto compute = [&] (auto args) {
 // f(...) f(f((f(x1, x2), x3), x4) ..., xn)
 return boost::hana::fold_left(args, op);
 };

 auto pseudo_result = compute(boost::hana::make_tuple(*std::begin(inputs)...));

 using return_value_type = decltype(pseudo_result);

 auto size = a[0_c].get_count();

 buffer<typename return_value_type> output { size };

 queue{}.submit([&] (handler& cgh) {
 auto ka = boost::hana::transform(a, [&] (auto b) {
 return b.template get_access<access::mode::read>(cgh);
 });

 auto ko = output.template get_access<access::mode::discard_write>(cgh);

 cgh.parallel_for<class gen_add>(size, [=] (id<> i) {
 auto operands = boost::hana::transform(ka, [&] (auto acc) {
 return acc[i];
 });

 ko[i] = compute(operands);
 });

 return output.template get_access<access::mode::read_write>();
 });

 int main() {
 std::vector<int> u { 1, 2, 3 };
 std::vector<float> v { 5, 6, 7 };

 for (auto e : generic_executor([] (auto x, auto y) { return x + y; }, u, v))
 std::cout << e << ' ';

 std::cout << std::endl;

 std::vector<double> a { 1, 2.5, 3.25, 10.125 };
 std::set<char> b { 5, 6, 7, 2 };
 std::list<float> c { -55, 6.5, -7.5, 0 };

 for (auto e : generic_executor([] (auto x, auto y) { return 3*x - 7*y; }, a, b, c))
 std::cout << e << ' ';

 std::cout << std::endl;

 return 0;
 }

 6 8 10

 352 -128 -44.25 -55.875

© Copyright 2018 Xilinx
Modern metaprogramming as... hardware design tool

Alternative implementation of

```cpp
auto compute = [] (auto args) {
    return boost::hana::fold_left(args, [] (auto x, auto y) { return x + y; });
}; // f(... f(f(x1, x2), x3), x4) ..., xn)
```

– Possible to use other Boost.Hana algorithms to add some hierarchy in the computation (Wallace's tree...)
– Or to sort by type to minimize the hardware usage starting with “smallest” types

⇒ Various space/time/power trade-offs directly using metaprogramming! 😊

Metaprogramming allows various implementations according to the types, sizes...
– Kernel fusion, pipelined execution...
– Codeplay VisionCpp, Eigen kernel fusion, Halide DSL...
– In sync with C++ proposal on executors & execution contexts

⇒ C++2a introspection & metaclasses will allow quite more!
– Generative programming... [link](http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0707r2.pdf)
 • Mind-blowing... [link](https://www.youtube.com/watch?v=4AfRAVcThyA)
– Express directly and specialize code for each PE of a TPU for example

⇒ Imagine if SystemC was invented with C++2a instead of C++98...
Study group 7 **Compile-time programming** (chair Chandler Carruth, Google)

- 2 different approaches already implemented before ratification
 - Experiment ahead & give feedback to committee
 - First focused on compile-time reflection capabilities, then expanded to compile-time programming in general

T: metaclass reflecting type T, $expr$: reflect expression $expr$

```cpp
constexpr {
    // execute this at compile time
    for... (auto m : $T$.variables()) // examine each member variable m in T
    if (m.name() == "xyzzy") // if there is one with name "xyzzy"
        -> { int plugh; } // then inject also an int named "plugh"
}
```

- Can push SYCL Next to stratospheric levels 😊
 - Adapting datastructures to hardware specs… Automatic AOS/SOA transformations, remapping…
Experimenting with fixed-point types
Experimenting with fixed-point types

Fixed-point implementation relies on existing ISO C++ CNL implementation

- Interesting proposal of layered C++ library for fixed-point types by John McFarlane
 https://github.com/johnmcfarlane/cnl
- Work well with triSYCL on CPU: the virtue of SYCL as pure C++ 😊
- Can also works with Xilinx HLS C++ type `ap_int<>` in emulation on CPU

Issue with triSYCL compiler about class constructors & address spaces

- In Clang C++ object default constructors have parameter only in address space 0
- Constructors, assignments, template deduction, overloading… need to work with other address spaces
 - Global, private, constant, generic
- Looking at how OpenCL C++ solves these issues
- Interesting to factorize out this code while upstreaming OpenCL C++ and SYCL compilers
- Waiting for rebasing triSYCL on Clang/LLVM 7/ToT
#include <CL/sycl.hpp>

...

#include <cnl/fixed_point.h>

using namespace cl::sycl;

using namespace cnl;

constexpr size_t N = 1024;

using Type = fixed_point<char, -4>;

using HighType = fixed_point<int, -8>;

int test_main(int argc, char *argv[]) {
 ...
 buffer<HighType> a { N };
 buffer<Type> b { std::begin(source_input),
 std::end(source_input) };
 buffer<Type> c { std::begin(source_input_1),
 std::end(source_input_1) };
 ...

 for (int j = 0; j < 100; j++) {
 // Launch a kernel to do the operations
 q.submit([&] (handler &cgh) {
 // Get access to the data
 auto a_a = a.get_access<
 access::mode::discard_write>(cgh);
 ...

 // A typical FPGA-style pipelined kernel
 cgh.single_task<class add>([&],
 d_a = drt::accessor<decltype(a_a)>{ a_a },
 d_b = drt::accessor<decltype(a_b)>{ a_b },
 d_c = drt::accessor<decltype(a_c)>{ a_c }) {
 decltype(d_a)::value_type sum = 0.0;
 for (unsigned int i = 0 ; i < N; ++i)
 sum += d_c[i];
 for (unsigned int i = 0 ; i < N; ++i)
 d_a[i] = d_b[i] * sum;
 });
 }

 return 0;
}
Hardware & Software testing context

- CPU (Intel core i7-6700)
- FPGA (ADM-PCIE-7V3)
- Linux Ubuntu 17.10
- triSYCL device compiler using Clang/LLVM 3.9
- 2017.2 Xilinx xocc compiler using Clang/LLVM 3.1
- 2017.2 Xilinx xocc compiler using Clang/LLVM 3.9
- Xilinx SDx OpenCL runtime 2017.2

Experiments:

- triSYCL fixed-point
 - Single-source triSYCL with CNL fixed-point type on FPGA
- triSYCL float
 - Single-source triSYCL with floating-point type on FPGA
- triSYCL ap_fixed interoperability
 - Interoperability with HLS C++ kernel using ap_fixed type on FPGA
- triSYCL float interoperability
 - Interoperability with HLS C++ kernel using floating-point type on FPGA
- HLS C++ float
 - Xilinx HLS C++ with floating-point type on FPGA
- HLS C++ ap_fixed
 - Xilinx HLS C++ with ap_fixed type on FPGA
Comparing Implementation Results for the Designs

<table>
<thead>
<tr>
<th>Language</th>
<th>Type</th>
<th>LUT</th>
<th>LUTMem</th>
<th>REG</th>
<th>BRAM</th>
<th>DSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>triSYCL</td>
<td>float</td>
<td>2898</td>
<td>1348</td>
<td>3131</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>triSYCL</td>
<td>fixed_point</td>
<td>2469</td>
<td>1134</td>
<td>2752</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HLS C++</td>
<td>float</td>
<td>1450</td>
<td>75</td>
<td>2517</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>HLS C++</td>
<td>ap_fixed</td>
<td>1651</td>
<td>76</td>
<td>2666</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

![Kernel Execution Time (ms)](image-url)