
How to Optimize Compute Driver?
Let’s Start with Writing Good Benchmarks!
Michal Mrozek

IWOCL 2022

Notices & Disclaimers

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly
available ​updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

SYCL and the SYCL logo are trademarks of the Khronos Group Inc.

* Other names and brands may be claimed as the property of others.

2

Agenda

3

▪ Why have we created Compute Benchmarks?

▪ Framework capabilities

▪ Current test sets and success story

▪ Plans & contribution guidelines

Intel Technology

Why have we created Compute Benchmark?

4

Applications

Optimizing drivers is not straightforward!

5

Finding what to optimize in the driver is
challenging:

• What applications measures?

• What are the bottlenecks?

• How it uses the driver?

• What needs to be optimized?

• What may be redundant?

Even if you know all of this:

• Application execution may be very long

• Application may behave differently when you
start changing things

Application 1
Compile

Timer.start()
Allocate
Execute

Timer.end()
Verify

Report CPU time

Application 2

Compile
Allocate
Execute
Verify

Get Profiling
Report profiling

GPU time

Applications composed of many elements

6

Optimizing a step may not be even visible in
final application score

• If a step only takes 1% of whole application,
even when it is removed totally it will only
boost workload by ~1%.

• Applications often measure multiple steps
executed together

• It is challenging to focus and optimize one
step in the whole pipeline using current
workloads

Create Device
Create Context

Create Programs
Create Kernels

Create Command Queues
Create Buffers/Images

Populate Buffers/Images with data
Set Arguments to the kernel

Enqueue Kernels
Flush Kernels

Read data back to the host
Wait for Kernels Completion

Applications – API usages

This created a need to develop Compute Benchmarks

• Focused tests checking only one thing per scenario

• Each test as simple as possible

• Each test produces a reliable and repeatable result

• Plain API usage to make sure there is no additional
overhead

• Each test can be easily showcased as sample of API usage

• Easy download & use approach, no dependencies required

• Easy addition of new scenarios

Compute Benchmarks

• Supports Linux and Windows

• Permissive license (MIT)

• Runs on any GPU Hardware supporting
OpenCL

• Allows Vendor extensions

• Allows Vendor specific tests

• Full code in Open Source

https://github.com/intel/compute-benchmarks/

https://github.com/intel/compute-benchmarks/

Intel Technology

Framework capabilities

9

Multiple Backend Architecture

10

Test

Argument Values

Arguments

Level Zero

OpenCL™

SYCL™

Argument
description

Test definition

• Backend is optional for given
test

• There is no upper limit on
backends, currently we have
OpenCL™, Level Zero and
SYCL™

• Each test reuses common
resource gathering logic, all
results look the same

• Each Backend receives the
same arguments, which
allows easy comparison

Adding test – common definition

11

Test

Argument Values

Arguments

Argument
description

Test definition

Adding test – common argument values

12

Test

Argument Values

Arguments

Argument
description

Test definition

Adding test – backend implementation

13

1. Common argument set passed to test
2. Arguments contain values that changes test

behavior
3. Prior to every benchmark, warmup phase is

done which basically does the same things
that test will do

4. Each benchmark runs configurable number
of iterations to collect multiple samples and
provide aggregated results

5. Timer class used whenever we want to
measure something from CPU perspective,
measureStart & measureEnd clearly shows
what is being measured in the test

6. Each test has statistic class available that is
responsible for aggregating results from
multiple iterations, user can specify what
kind of measurement is used which will
further influence results processing phase.

Sample test output

14

Framework automatically produces documentation

15
https://github.com/intel/compute-benchmarks/blob/master/TESTS.md

https://github.com/intel/compute-benchmarks/blob/master/TESTS.md

Each test can be run separately with any parameters

16

• --dumpCommandLines - will run the test suite and provide command line for each test

• You can later run just a single test

• You can add --markTimers to see exactly what is being measured (useful combined with Intercepting Layers)

• --verbose -> provides output from every test iteration

Highly efficient focused performance optimizations are easy with Compute Benchmarks !

Intel Technology

Test suites and success story

17

Currently implemented test suites

API Overhead

• Host Overhead for crucial API calls

Memory Benchmark

• All variants of memory transfers, including
host calls and ND-range kernels

Submission Benchmark

• All aspects of submission & completion

• Resource allocations costs

• Thread scheduling costs

Currently implemented test suites (2)

Overlap Benchmark

• Concurrent execution from multiple processes

Multithreaded Benchmark

• Concurrent execution from multiple threads

Atomic Benchmark

• Checks performance of various atomic operations types / scopes / memory
orders

Kernel Benchmark

• Measure various operations done in compute kernels

Optimization – caching kernel arguments

Performance opportunity:

• Application calls clSetKernelArgSVMPointer with the
same values

• Add driver mechanism to detect this scenario and skip
programming logic

• Becomes very tricky as app may free SVM allocation
and get the same pointer for different one

• We added all scenarios to Compute Benchmark
including corner cases with reallocation

• 6x reduction in time of clSetKernelArgSVMPointer

• +13.2% workload performance

• With highly precise Compute Benchmark we were
able to optimize calls that take 30ns

Intel Technology

Contribution guidelines and plans

21

Contribution guidelines

• Test needs to be quick, whole test suite should execute in seconds, not minutes

• Do not measure multiple things, focus on one thing in test

• Avoid wrappers, complicated logic, tests should be simple & comprehensive

• Make sure test is stable, do warmups, eliminate noise factor

• Do not add any external dependencies/libraries , compute-benchmarks are
expected to be easy to build & run

• Do not require additional package installation in the system (apart from drivers)

• Do not add too many permutations, add new suites to keep them small

• Clearly describe parameters and test definition, it should be obvious what test
measures

Plans & call to action

• Initial version of Compute Benchmarks already open sourced ->
https://github.com/intel/compute-benchmarks/

• Try it out !

• New tests being added on daily basis, plan is to have all OpenCL™ / Level Zero
APIs covered

• Contributions highly welcomed!

https://github.com/intel/compute-benchmarks/

Acknowledgments

24

Thanks to Ben Ashbaugh , Lukasz Jobczyk and Dominik Dabek for
help with the presentation!

Useful additional capabilities

26

• --doNotPrintBandwidth – Bandwidth tests will provide time in us instead of GB/s, very
useful to translate bandwidth test to latency test

• --noop – do not run tests, just print their names, very useful to see what are the tests in
given test suite

• --csv - prints results in csv format
• We also have tools directory for storing useful tools that are handy during day-to-day

work
• Tests are based on Google Test Framework, so traditional gtest command line parameters

also works, like –gtest_filter etc.

