
Towards performance portability of AI models 
using SYCL-DNN

Muhammad Tanvir – Staff Software Engineer – ML libraries

IWOCL – 10-12 May 2022



© 2022 Codeplay Software Ltd.2

• Deep Learning Challenges

• Problem Statement – performance portability

• How does SYCL help?

• Performance Evaluations

• Deep Learning on RISC-V

• Conclusions

Outline



© 2022 Codeplay Software Ltd.3

• Diversity of Technologies and Techniques

• Migrating between Deep Learning frameworks

• Multiple implementations of same NN Optimization algorithms

• Maintainability of various version of low-level backend/libraries integrated in existing 
high-level frameworks

• Hardcoded implementation of inference engines for a restricted set of hardware

• Multiple implementations of same NN algorithms across various target HW

Deep Learning Challenges



© 2022 Codeplay Software Ltd.4

Deep Learning Challenges

• Diversity of Technologies and Techniques.

• Migrating between DL framework.

• Multiple implementations of Same NN Optimization 
algorithms.

• Maintainability of various version of low-level libraries 
integrated in existing high-level frameworks.

• Hardcoded implementation of Inference engines for a restricted
set of hardware.

• Multiple implementations of same NN algorithms across various target HW

ONNX

ONNX Runtime



© 2022 Codeplay Software Ltd.5

• Multiple implementations of same NN algorithms across 
various target HW – is there a way around this?

• An ideal solution(s) should:
• Be portableacross different platforms

• Require little (to no) changesto the actual kernel code

• Yield acceptable performanceas compared to vendor optimized code

• Have backward compatibility (maintainability)

Problem Statement



© 2022 Codeplay Software Ltd.6

• Supports cross-platform portability

• Different implementations of SYCL compilers provide a variety of targets

• Is maintainable

• Open-source implementations

• Kernel Code modifications?

• Performance Portability?

SYCL



© 2022 Codeplay Software Ltd.7

• Kernel Code Modification?

• Possible Solution: Use C++ template meta programming to 
write highly parametrized kernels (for the most compute 
intensive operations)

• Benefits:
• Reuse the same kernel code
• Modify (tune) the template parameters to maximize performance on target 

hardware

SYCL



© 2022 Codeplay Software Ltd.8

• Performance Portability?

• Possible Solution:
• Tune the template parameters of the kernel to best match the underlying 

hardware*

• Expose maximum performance out of the tuned kernel

• Acceptable Performance:
• Within 70%-80% range of vendor optimized code's performance

SYCL

*e.g. https://github.com/codeplaysoftware/sycl-blas/blob/master/tools/auto_tuner/gen/intel_gpu.json



© 2022 Codeplay Software Ltd.9

SYCL

SYCL-DNN

• Conv
• Batchnorm
• Pool
• Softmax etc

SYCL-BLAS

• GEMM
• GEMV
• Reduction etc

https://github.com/codeplaysoftware/SYCL-DNN https://github.com/codeplaysoftware/sycl-blas

https://github.com/codeplaysoftware/SYCL-DNN
https://github.com/codeplaysoftware/sycl-blas


© 2022 Codeplay Software Ltd.10

1. Identify the most compute intensive operation(s)

2. Choose the target hardware

3. Tune SYCL code based on the target hardware

4. Evaluate performance

5. Repeat steps 2-4 for remaining target hardware

Performance Evaluations



© 2022 Codeplay Software Ltd.11

VGG Demo

VGG

90% = American 
Staffordshire Terrier
10% = cat

VGG-16

Image Classification

Performance Evaluations



© 2022 Codeplay Software Ltd.12

Performance Evaluations

Conv ->

BiasAdd ->

Relu ->

Pooling ->

Gemm ->

Softmax ->

VGG

1. Identify the most compute intensive operation

sycldnn::conv2d

sycldnn::biasAdd

sycldnn::relu

sycldnn::pooling

syclblas::gemm

sycldnn::softmax



© 2022 Codeplay Software Ltd.13

Performance Evaluations

Conv ->

BiasAdd ->

Relu ->

Pooling ->

Gemm ->

Softmax ->

VGG

1. Identify the most compute intensive operation

sycldnn::conv2d

sycldnn::biasAdd

sycldnn::relu

sycldnn::pooling

syclblas::gemm

sycldnn::softmax

GEMM



© 2022 Codeplay Software Ltd.14

2. Choose the target hardware

Performance Evaluations

Intel CPU Intel GPU NVIDIA GPU RISC-V



© 2022 Codeplay Software Ltd.15

3. Tune SYCL code based on the target hardware

• Target Hardware
• Intel(R) Core(TM) i7-6700K CPU @ 4 GHz
• Intel Corporation HD Graphics 530

• Most Compute Intensive Operation
• GEMM

• Tuning Methodology
• Lawson, John, and Mehdi Goli. "Performance portability through machine 

learning guided kernel selection in SYCL libraries." Parallel Computing 107 
(2021): 102813.

Performance Evaluations



© 2022 Codeplay Software Ltd.16

• Every GEMM operation, in DNNs, has different compute 
intensity

• Most optimal solution
• One tuned kernel per GEMM operation

• Yields the best performance

• Size of the library increases drastically

• Semi-optimal solution
• One tuned kernel per DNN model

• Yields semi-optimal performance

• Limited no. of kernels in the library

Tuning paradigm



© 2022 Codeplay Software Ltd.17

Performance Evaluations

0

50

100

150

200

250

300

350

SYCL-DNN SYCL-DNN + Tuning oneDNN

Intel(R) Core(TM) i7-6700K CPU

VGG16 Processing Time (ms)

0

20

40

60

80

100

120

140

160

SYCL-DNN SYCL-DNN + Tuning oneDNN

Intel Corporation HD Graphics 530

VGG16 Processing Time (ms)

*With semi-optimal tuning regime



© 2022 Codeplay Software Ltd.18

2. Choose the target hardware

Performance Evaluations

Intel CPU Intel GPU NVIDIA GPU RISC-V



© 2022 Codeplay Software Ltd.19

3. Tune SYCL code based on the target hardware

• Target Hardware
• NVIDIA Titan RTX GPU – 24 GB DDR6 

• Most Compute Intensive Operation
• GEMM

• Tuning tool
• Modified version of SYCL-BLAS auto-tuner*

Performance Evaluations

*https://github.com/codeplaysoftware/sycl-blas/tree/master/tools/auto_tuner



© 2022 Codeplay Software Ltd.20

3. Tune SYCL code based on the target hardware

• Search all possible GEMM configs* exhaustively
• Choose a GEMM config

• Run the entire VGG16 (DNN) model and measure performance

• Record results for all possible GEMM configs

• Choose the GEMM config which yields the best performance

Performance Evaluations

*https://github.com/codeplaysoftware/sycl-blas/blob/master/tools/auto_tuner/gen/nvidia_gpu.json



© 2022 Codeplay Software Ltd.21

Performance Evaluations

0

2

4

6

8

10

12

14

16

SYCL-DNN SYCL-DNN + Tuning cuDNN

NVIDIA Titan RTX

VGG16 Processing Time (ms)



© 2022 Codeplay Software Ltd.22

2. Choose the target hardware

Performance Evaluations

Intel CPU Intel GPU NVIDIA GPU RISC-V



© 2022 Codeplay Software Ltd.23

• Target Hardware
• RISC-V spike simulator – single core

• Software Stack
• Acoran – The Open Acceleration Platform*

Deep Learning on RISC-V

*https://www.codeplay.com/solutions/acoran/



© 2022 Codeplay Software Ltd.24

• Domain specific accelerators are required to achieve cost-effective performance
on-chip

• Cost effective performance requires tuning the design to the needs of the 
workload required

• RISC-V ISA has a minimalist base integer instruction set and provides custom 
extensions
• An ideal starting point for creating special accelerators

• More companies are looking at RISC-V to enable AI software

• Designs can benefit from the RISC-V vector extension
• Enables vectorization for various application

• Helps achieve high compute density on chip

Why Neural networks on RISC-V?



© 2022 Codeplay Software Ltd.25

Acoran – The Open Acceleration Platform

Neural network classifier 
application

SYCL-DNN – NN library

Eigen - Linear Algebra Library

ComputeMux

Host CPU Programmamble
Cores

Communication IP Blocks

VGG-16

SYCL-BLAS – BLAS library

C++ software

Driver interface API

RISC-V hardware

The Acoran platform provides 
all the supporting open-source 
libraries and frameworks 
needed to build this neural 
network demonstration

Compiler



© 2022 Codeplay Software Ltd.26

GEMM Operator

Main Computation



© 2022 Codeplay Software Ltd.27

RISC-V/RVV Kernel compilation flow FC

CPU

CPU 
Compiler

Scalar LLVM IR

Vector LLVM IR

Codeplay Vectorizer (‘vecz’)

LLVM back-end

Device 
Compiler SYCL Kernel

CPU

CPU 
Compiler

SPIR/SPIR-V

Device 
Compiler

Scalar LLVM IR

SYCL Kernel

CPU 
Compiler

Device 
Compiler

CPU 
Compiler



© 2022 Codeplay Software Ltd.28

Deep Learning on RISC-V

VGG Demo



© 2022 Codeplay Software Ltd.29

• SYCL-DNN / SYCL-BLAS have support for efficient acceleration 
of popular DNNs

• Acoran platform provides an end-to-end compute stack for 
accelerating DNNs on RISC-V
• https://developer.codeplay.com/products/acoran/pre-alpha

• Recent Update: Adding SYCL to upstream ONNX Runtime
• https://github.com/codeplaysoftware/onnxruntime

Conclusions



@codeplaysoft codeplay.cominfo@codeplay.com

Thank you
muhammad.tanvir@codeplay.com


