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• Diversity of Technologies and Techniques

• Migrating between Deep Learning frameworks

• Multiple implementations of same NN Optimization algorithms

• Maintainability of various version of low-level backend/libraries integrated in existing 
high-level frameworks

• Hardcoded implementation of inference engines for a restricted set of hardware

• Multiple implementations of same NN algorithms across various target HW

Deep Learning Challenges
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Deep Learning Challenges

• Diversity of Technologies and Techniques.

• Migrating between DL framework.

• Multiple implementations of Same NN Optimization 
algorithms.

• Maintainability of various version of low-level libraries 
integrated in existing high-level frameworks.

• Hardcoded implementation of Inference engines for a restricted
set of hardware.

• Multiple implementations of same NN algorithms across various target HW

ONNX

ONNX Runtime
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• Multiple implementations of same NN algorithms across 
various target HW – is there a way around this?

• An ideal solution(s) should:
• Be portableacross different platforms

• Require little (to no) changesto the actual kernel code

• Yield acceptable performanceas compared to vendor optimized code

• Have backward compatibility (maintainability)

Problem Statement
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• Supports cross-platform portability

• Different implementations of SYCL compilers provide a variety of targets

• Is maintainable

• Open-source implementations

• Kernel Code modifications?

• Performance Portability?

SYCL
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• Kernel Code Modification?

• Possible Solution: Use C++ template meta programming to 
write highly parametrized kernels (for the most compute 
intensive operations)

• Benefits:
• Reuse the same kernel code
• Modify (tune) the template parameters to maximize performance on target 

hardware

SYCL
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• Performance Portability?

• Possible Solution:
• Tune the template parameters of the kernel to best match the underlying 

hardware*

• Expose maximum performance out of the tuned kernel

• Acceptable Performance:
• Within 70%-80% range of vendor optimized code's performance

SYCL

*e.g. https://github.com/codeplaysoftware/sycl-blas/blob/master/tools/auto_tuner/gen/intel_gpu.json
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SYCL

SYCL-DNN

• Conv
• Batchnorm
• Pool
• Softmax etc

SYCL-BLAS

• GEMM
• GEMV
• Reduction etc

https://github.com/codeplaysoftware/SYCL-DNN https://github.com/codeplaysoftware/sycl-blas

https://github.com/codeplaysoftware/SYCL-DNN
https://github.com/codeplaysoftware/sycl-blas
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1. Identify the most compute intensive operation(s)

2. Choose the target hardware

3. Tune SYCL code based on the target hardware

4. Evaluate performance

5. Repeat steps 2-4 for remaining target hardware

Performance Evaluations
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VGG Demo

VGG

90% = American 
Staffordshire Terrier
10% = cat

VGG-16

Image Classification

Performance Evaluations
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Performance Evaluations

Conv ->

BiasAdd ->

Relu ->

Pooling ->

Gemm ->

Softmax ->

VGG

1. Identify the most compute intensive operation

sycldnn::conv2d

sycldnn::biasAdd

sycldnn::relu

sycldnn::pooling

syclblas::gemm

sycldnn::softmax
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Performance Evaluations

Conv ->

BiasAdd ->

Relu ->

Pooling ->

Gemm ->

Softmax ->

VGG

1. Identify the most compute intensive operation

sycldnn::conv2d

sycldnn::biasAdd

sycldnn::relu

sycldnn::pooling

syclblas::gemm

sycldnn::softmax

GEMM
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2. Choose the target hardware

Performance Evaluations

Intel CPU Intel GPU NVIDIA GPU RISC-V
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3. Tune SYCL code based on the target hardware

• Target Hardware
• Intel(R) Core(TM) i7-6700K CPU @ 4 GHz
• Intel Corporation HD Graphics 530

• Most Compute Intensive Operation
• GEMM

• Tuning Methodology
• Lawson, John, and Mehdi Goli. "Performance portability through machine 

learning guided kernel selection in SYCL libraries." Parallel Computing 107 
(2021): 102813.

Performance Evaluations
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• Every GEMM operation, in DNNs, has different compute 
intensity

• Most optimal solution
• One tuned kernel per GEMM operation

• Yields the best performance

• Size of the library increases drastically

• Semi-optimal solution
• One tuned kernel per DNN model

• Yields semi-optimal performance

• Limited no. of kernels in the library

Tuning paradigm
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Performance Evaluations
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2. Choose the target hardware

Performance Evaluations

Intel CPU Intel GPU NVIDIA GPU RISC-V
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3. Tune SYCL code based on the target hardware

• Target Hardware
• NVIDIA Titan RTX GPU – 24 GB DDR6 

• Most Compute Intensive Operation
• GEMM

• Tuning tool
• Modified version of SYCL-BLAS auto-tuner*

Performance Evaluations

*https://github.com/codeplaysoftware/sycl-blas/tree/master/tools/auto_tuner
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3. Tune SYCL code based on the target hardware

• Search all possible GEMM configs* exhaustively
• Choose a GEMM config

• Run the entire VGG16 (DNN) model and measure performance

• Record results for all possible GEMM configs

• Choose the GEMM config which yields the best performance

Performance Evaluations

*https://github.com/codeplaysoftware/sycl-blas/blob/master/tools/auto_tuner/gen/nvidia_gpu.json
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Performance Evaluations
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2. Choose the target hardware

Performance Evaluations

Intel CPU Intel GPU NVIDIA GPU RISC-V
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• Target Hardware
• RISC-V spike simulator – single core

• Software Stack
• Acoran – The Open Acceleration Platform*

Deep Learning on RISC-V

*https://www.codeplay.com/solutions/acoran/
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• Domain specific accelerators are required to achieve cost-effective performance
on-chip

• Cost effective performance requires tuning the design to the needs of the 
workload required

• RISC-V ISA has a minimalist base integer instruction set and provides custom 
extensions
• An ideal starting point for creating special accelerators

• More companies are looking at RISC-V to enable AI software

• Designs can benefit from the RISC-V vector extension
• Enables vectorization for various application

• Helps achieve high compute density on chip

Why Neural networks on RISC-V?
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Acoran – The Open Acceleration Platform

Neural network classifier 
application

SYCL-DNN – NN library

Eigen - Linear Algebra Library

ComputeMux

Host CPU Programmamble
Cores

Communication IP Blocks

VGG-16

SYCL-BLAS – BLAS library

C++ software

Driver interface API

RISC-V hardware

The Acoran platform provides 
all the supporting open-source 
libraries and frameworks 
needed to build this neural 
network demonstration

Compiler
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GEMM Operator

Main Computation
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RISC-V/RVV Kernel compilation flow FC
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Device 
Compiler SYCL Kernel

CPU

CPU 
Compiler

SPIR/SPIR-V

Device 
Compiler

Scalar LLVM IR

SYCL Kernel

CPU 
Compiler

Device 
Compiler

CPU 
Compiler



© 2022 Codeplay Software Ltd.28

Deep Learning on RISC-V

VGG Demo
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• SYCL-DNN / SYCL-BLAS have support for efficient acceleration 
of popular DNNs

• Acoran platform provides an end-to-end compute stack for 
accelerating DNNs on RISC-V
• https://developer.codeplay.com/products/acoran/pre-alpha

• Recent Update: Adding SYCL to upstream ONNX Runtime
• https://github.com/codeplaysoftware/onnxruntime

Conclusions



@codeplaysoft codeplay.cominfo@codeplay.com

Thank you
muhammad.tanvir@codeplay.com


