
A Proof-of-Concept Performance 
Portable SYCL-based Fast Fourier 
Transformation Library

May 11, 2022

10th International Workshop on OpenCL and SYCL

Vincent R. Pascuzzi
Mehdi Goli (Codeplay)



DOE HPC Systems

2

2013
~10 PFLOPS

Heterogenous

2016
~10 PFLOPS

2018
~100 PFLOPS

2021
~100 PFLOPS

2022
~1000 PFLOPS

Homogeneous



DOE HPC Systems

3

2013
~10 PFLOPS

Heterogenous

2016
~10 PFLOPS

2018
~100 PFLOPS

2021
~100 PFLOPS

2022+
~1000 PFLOPS

Homogeneous

“EASY” “HARD”



HEP Center for 
Computational 
Excellence (CCE)

A Department of Energy High-Energy 
Physics program investigating:

• Performance portability
• I/O
• Complex workflows
• Event generators*

Portable Parallelization Strategies (PPS) 
effort focuses on performance and 
portability solutions for current and future 
HEP software

• Select among the participating 
experiments a number of x86-based 
‘testbeds’ and rewrite the codes in 
various programming models

4

* Event generator software is written and maintained by theorists.



Limited number of developers (we are 
physicists) and there are numerous 
platforms with various architectures

• Large codebases which need to 
stand the ‘test of time” (~decade)

• We cannot afford to support and 
maintain multiple codebases

• We need to utilize leadership 
computing facilities.

• We need portability and attain a fair 
level of performance.

5

LUMI (Finland)
AMD CPU, AMD GPU

Swiss National Supercomputing Center (CSCS), 2023
NVIDIA/ARM CPU, NVIDIA GPU

Riken Center for Computational Science, 2021
ARM CPU

Leonardo (Italy)
Intel CPU, NVIDIA GPU



-based libraries

6

Decouple
• from vendors providing single architecture/platform libraries
• boiler-plate code when using interoperability

Readability, maintainability and sustainability
• backwards compatibility (e.g., APIs constantly evolving

⟹ maintain interoperable implementations)
• source polluted with macros – e.g., #ifdef – to deal with many backends
• foster inclusivity: community-driven open-source projects

And more...
• provide template metaprogramming for users to optimize for their target hardware (we don’t 

care about what they want to run on, only that it does run)
• auto-tuning mechanisms: query available devices and configure/tune implementation for 

automatically optimizing parameters for a given device
• elevate reproducibility as first-class requirement



Performance portability

7

“An application is performance portable if it achieves a
consistent ratio of the actual time to solution to either the
best-known or the theoretical best time to solution on each
platform with minimal platform specific code required.” 1

1 (definition of) Performance Portability, 2016 Department of Energy Center of Excellence Meeting.
2 Pennycook et al. (2019).

Performance
• It runs: {Yes, No}
• It runs efficiently with respect to some baseline

Portability
• Can execute on multiple systems
• Adaptable to varying architectures and platforms

Productivity
• SLoC, maintainability, sustainability
• Port/migration/translation

Reproducibility
• Crucial for most science
• Results (required precision) cannot depend on

hardware

Useful metric should2:
• Be measured specific to a set of platforms of interest H
• Be independent of the absolute performance across H
• Be zero if a platform in H is unsupported, and approach

zero as the performance of platforms in H approach zero
• Increase if performance increases on any platform in H
• Be directly proportional to the sum of scores across H

mailto:https://performanceportability.org/perfport/definition/
https://www.sciencedirect.com/science/article/pii/S0167739X17300559


SYCL-FFT

8

Based on Cooley-Tukey (see backup)
• Implements radix-{2,4,8} algorithms

Header-only
• Functor templated class, three template 

arguments
• WG_FACTOR depends on input

sequence length, determined a priori

Proof-of-concept
• Limited to 1D
• C2C up to 211 length
• Computed out-of-place



Experimental setup

9



Computational Performance
Ampere and CDNA

10



Computational Performance
RISC, x86 and Gen9

11



Reproducibility

12



Conclusions

13

Help grow SYCL ecosystem with purely SYCL-based libraries
• Decouple from vendors; improve readability, maintainability and focus on reproducibility
• Foster inclusive community-driven open-source software projects

PoC SYCL-FFT
• Limited to 1D, C2C, lengths up to 211

• To our knowledge, first demonstration of intel/llvm HIP backend
• Kernel runtime competitive with vendor-optimized libraries
• Small kernels suffer from launch latencies, sporadic and highly fluctuate on some hardware

Ongoing and future work
• Continued improvements to SYCL backend implementations and offloading mechanisms potential close gaps
• SYCL-FFT support for {2,3}D FFT, accommodate arbitrary input sizes
• Further analyses including hipSYCL (highly optimized HIP backend)



Conclusions

14

Help grow SYCL ecosystem with purely SYCL-based libraries
• Decouple from vendors; improve readability, maintainability and focus on reproducibility
• Foster inclusive community-driven open-source software projects

PoC SYCL-FFT
• Limited to 1D, C2C, lengths up to 211

• To our knowledge, first demonstration of intel/llvm HIP backend
• Kernel runtime competitive with vendor-optimized libraries
• Small kernels suffer from launch latencies, sporadic and highly fluctuate on some hardware

Ongoing and future work
• Continued improvements to SYCL backend implementations and offloading mechanisms potential close gaps
• SYCL-FFT support for {2,3}D FFT, accommodate arbitrary input sizes
• Further analyses including hipSYCL (highly optimized HIP backend)

Special ‘thanks’ to our ANL friends---
Benjamin Allen, Kalyan Kumaran
and Kevin Harms---for all their 
support and access to test machines!



Backup

15



FFT 101

16

• Discretize input function (time/space), map to 
frequency domain

,

• Cooley-Tukey: exploit periodicity, chunk length-N
FFT into smaller ones

T(N) = N log n
with log n splits



Auxiliary Figures

17


