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WHY FPGAS FOR HPC APPLICATIONS

[ Field Programmable Gate Arrays (FPGAs) gaining traction as accelerator devices competitive to traditional architectures
Examples :
= Deep Neural Networks (DNN) — Bing, Baidu

. . . Intel® FPGA Programmable Intel Enpirion® FLASH USB
® Financial computing Acceleration Card D5005 Power Solutions ;
, BMC USB

= Databases
Intel MAX® 10 Hub
FPGA
DDR4 w/ECC

Networking Interface

[ Attractive features of FPGAs

= High Performance for parallel algorithms — data-flow model e
= Energy efficient e

Low latency “
516)( PCle*

Reconfigurability — Software Defined Accelerator (SDA) v

O FPGA programming made easier than before with powerful tools and hardware capabilities
= Introduction of High-Level Synthesis (HLS) tools
= HBM memory
= Hardware single precession cores
® Cloud FPGA node instances
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FPGA DEVICE AND PROGRAMMING CHALLENGE

JFPGA device consists of configurable elements to implement an

algorithm or application in a digital circuit |_,r_|DDR4 |_1._|DDR4 |_1._|DDR4 |_1._|DDR4 intel PAC 5005
= Adaptive Logic Modules(ALMs) — Look Up Tables(LUTs) and Registers LA D Momory comtater
= Random Access Memory Blocks — 640-bit MLABs and 20K bit M20K ' DSPs Ny [ Memory Interfecs |
= Digital Signal Processing Blocks(dsps) T B
[ [ i i *< I <
= Routing Fabrics to connect circuit elements S g%(_l_, HSSI PHY
o = _gJ
= Hardened blocks — Memory Controller, PCle , Clock Modules g . ngggi?uration ;%% ‘
JFPGA accelerator card additionally consists of big DDR4 memories, 5 —
Network interfaces and PCle interface to communicate with Host
| Cache Interface |
Challenge is generating optimal circuit for an application using a high- f o
level language and requiring low level customization Host [ Pcie Genaxte
A
= User has to design memory hierarchy x
= Balance throughput and device resource consumption across many kernels

= Design should consider larger reconfiguration time opposed to GPU kernel calls
= Evolving HLS tools and limited debugging facilities

PCle Bus
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CONTRIBUTIONS

O Extending previous work for synthesizing structured-mesh solvers on Xilinx FPGAs
= Kamalakkannan et. al IPDPS2021 - High-Level FPGA Accelerator Design for Structured-Mesh-Based Explicit Numerical Solvers
= Kamalakkannan et. al ICS2022 - High Throughput Multidimensional Tridiagonal System Solvers on FPGAs

Q In this work, we develop workflow to target same class of applications on Intel FPGAs using SYCL

L Codify design using SYCL by Overcoming challenges for gaining near-optimal performance :
= Reducing kernel call overhead by moving iterative loop to FPGA
= On chip memory saving for Thomas solver implementation using decoupled computation of forward loop

1 Use design workflow for implementing two representative applications on Intel D5005 FPGA
= Showcase use of SYCL to implement nontrivial application on FPGAs
= Performance comparison with Nvidia V100 - compare best implementation on both architectures !
= Competitive performance and significant energy saving is achieved compared to GPUs
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OUTLINE

FPGAs for HPC — Motivation and challenges /
QContributions v

O Application Class 1 - Stencil Solvers
= Primitive Design
= Challenges and Optimizations when using SYCL
= [ Performance Models ]

O Application Class 2 - Multidimensional Tridiagonal System Solvers
= Thomas Solver
= Challenges and Optimizations when using SYCL - on chip memory saving optimization
= [ Performance models ]

W Performance

= Runtime and Bandwidth
= Energy consumption

L Lessons learnt and Conclusions
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APPLICATION CALSS 1 - STRUCTURED MESH BASED EXPLICIT STENCIL SOLVERS

for t in range (niter) {
for x in range (height) {
for y in range (width) {
Ut = kIXUg_1, + k2XUy g + k3XUyyq p+ k4X Uy, pq+ k5XUL,
}

U Finite Difference Methods(FDM) used to solve PDEs numerically,
[ Stencils used to specify required points

O Naturally parallel — all cells could be updated in parallel

WARWICK
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SYCL: WORK GROUP BASED STENCIL IMPLEMENTATION

1 using namespace sycl;

2 void stencil _WI( queue &q, U Pros

3 butfer<float,2> b_data_in, = Familiar GPU implementation style
buffer<float,2> b_data_out,
int sizeO, int sizel, D Cons

4
5
6
7
8
9

int blockO, int blockl){

q.submit ([&] (handler& h){
accessor in(b_data_in, h); = Multiple memory access => multi-port cache
accessor out(b_data_out, h);

= Performance depends on lower global memory bandwidth on FPGAs

= Required cache size unknown at compile time

Tange<2> local_range (block0, blockl); = Kernel to Kernel communication using pipes is not possible

range<2> global_range(sizeO, sizel); [more on this later 1]

14 h.parallel_for<class stencil_WI>

15 (nd_range<2>(local_range, global_range),

16 [=] (nd_item<2> point){

17 int y = point.get_global_id(0);

18 int x = i = id (25

19 1f(x > 0 && y > 0 && x < sizeO-1 && y < sizel™

float r = (inly-1][x] + in[y+1][x])*0.125f +

21 ] [x]*0.5fF;
22 out [yl [x] = r;
23 }

24 1))

25 }
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SYCL: SINGLE TASK IMPLEMENTATION OF STENCIL SOLVER

if(y < sizel) s_1_2 = inl[y]l[{];

25 -1
windowl [ptr] = s_1_2;

_ Output

26 Input

1 using namespace sycl; 27 float r = (s_1_0 +s_0_1 + s_2_1+ s_1_2)*0.125f +

2 void stencil_ST(queue &q, 08 S _11%0.51;

3 buffer<float,2> &b_data_in, 29 if(x >0 & y > 0 &&

4 buffer<float,2> &b_data_out, 30 x < size0-1 && y < sizel){

5 int size0, int sizel){ a1 out[y-11[x] = r;

6 q.submit([&] (handler& h){ 59 }

7 accessor in(b_data_in, h); 33 }

8 accessor out(b_data_out, h); sa B3

9 h.single_task<class stencil_ST> ([=] (A 35 }
10 float windowl [MAX_DIM];
11 float window2[MAX_DIM];
12 float s_1_0, s_0_1, s_1_1, s_2_1, s_1_2;
13 /* +1 due to one row delay through window buffer */
14 int total_itr = (sizel+1)*size0; '
15 for(int i = 0; 1 < total_itr; i++){ I
16 int x = itr 7 sizeO; |
17 int y = itr / sizeO; | Cyc\\Buffer
18 int ptr = itr % (size0-1); | 47
19 | Reg [@—| Reg |[€— Rez (¢
20 s_1_0 = window2[ptr]; ‘ y _J
o s 0 1 . | A B +\* ~N : ——p|  CyclicBuffer
22 girdow2 [ptr] = s_1_1; | stencil
23 s_1.1 =s8_2_1; I Computation
24 s_2_1 = windowl [ptr]; |

|
|
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SYCL: VECTORIZATION

1 /* Data type for wider data path */
2 struct dPathV {[[intel::fpga_register]]float data[VFACTOR];};

Cyclic
Buffer <

T 1l
el

Cu2

A A 4 4 A

6 struct dPathV s/ _0, s_0_1, s_1_1, s_2_1, s_1_2, vec_wr; T
7 Tosdnt i =07 i < total_itr; i++){ T =
8 /* other declarations, index calculation, window buffer*/

9 float mid_1[VFACTOR+2] = {s_O_1.data[VFACTOR-1], \

10 s_1_1.datal0], .. , s_1_1.datal[VFACTOR-1] , s_2_1.datal[0]};
11 #pragma unroll VFACTOR

12 for(int v = 0; v < VFACTOR; v++){

13 int i_ind = i *VFACTOR + v;

14 float val = (s_1_0.datal[v]+s_1_2.datalv] + mid_1[v] + \

15 mid_1[v+2])*0.125f+ s_1_1.datal[v]*0.5f;

16 bool cond = (i_ind>0 && i_ind<sizeO-1 && j>1 && j<size1);

17 vec_wr.datal[v]= cond ? val : s_1_1.datal[v];

18}

19 /* writing results to pipe */

)
20 } Time Step ¢ N Tl
|

et

A A A A
JJI
=

0

<

Q

=

—_

[ Vectorization Factor: Number of mesh points updated at same clock
= Called the "Cell parallel" method in Waidyasooriya et al. 2017
1 Demands bandwidth proportional to vectorization factor

Time Step t+1 -

1 On-chip memory requirement ideally same as primitive design
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SYCL: ITERATIVE LOOP UNROLLING

1 template <int N> struct itr_loop {
2 static void instantiate(queue &q, int nx, int ny){

3 itr_loop<N-1>::instantiate(q, nx, ny);

4 stencil_compute<N-1, 4096, 8>(q, nx, ny);
5

61

7 template<> struct itr_loop<i>{

s static void instantiate(queue &q, int nx, int ny){
9 stencil_compute<0, 4096, 8>(q, nx, ny);

10 ¥

11 };

Cyclic Buffer J

4 h 4 yY vy

Stencil
Computation

O Multiple Iterations in Parallel

= Called as “Step parallel” method in Waidyasooriya et al. 2017

1 Does not cost external memory Bandwidth
O On-chip memory o unroll factor

*Previous works utilized this technique - Waidyasooriya2017, soda2018
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I
=y l c——
: Reg JI | : Reg J' Cyclic Buffer
I | | I
| et
Reg [« Reg |« Reg ~: I I Reg Reg |« Reg ﬁl
_____ e I—J_ _ et ]
1 ' | =: [
| : I ! :
I| Reg — Cyclic Buffer I — Il Reg — Cyclic Buffer
| S— Stencil [ S—
I Computation
I
input | 4k
Compute module for Iteration - k I Compute module for Iteration— k+1
B Output
— — Output Input = =1 "
A
Input
AXI
Read Kernel >
ﬂ FIFO
Compute
Kernel:1 External
Memory
FIFO (DDR4/HBM)
Compute
Kernel:2
ﬂ FIFO
AXI
Write Kernel >




SYCL: BATCHING

Mesh:1 Mesh:2
O Pipeline latency becomes significant
for smaller grids
kernel:1 Idle kernel:1 Idle kernel:1 Idle kernel:1 Idle
A
i Mesh:1, ltri1 i Mesh:1, Itr2 i Mesh:2, Itr1 i Mesh:2, Itr:2 i Output Point
| ] I j | j I | }'
: : : ? : ? : : : ~ Delay
! Read Kernel | I Read Kernel | | Read Kernel | I Read Kernel | Input Point }De|ay >
| Compute Kernel:1 | { Compute Kernel:1 } | Compute Kernel:1 | { Compute Kernel:1 } it
[ Compute Kernel:2 | | [ ComputeKernel:2 | | [ Compute Kernel:2 | | [ Compute Kernel:2 ]
5 ; ; ; Compute Kernel:1 Compute Kernel:2
| Compute Kernel:3 | | Compute Kernel:3 | | Compute Kernel:3 | | Compute Kernel:3 |
[ Write Kernel | [ Write Kernel | [ Write Kernel | [ Write Kernel |
Time O Batching on last dimension
kernel:1 Idle kernel:1 Idle
e i (J Reduce latency per mesh
: Mesh:(1,2), Itr:1 | : Mesh:(1,2), Itr:2 : ; . p .
: — ] (1 No SYCL specific constructs required
| Read Kernel | | Read Kernel | : for batched processi ng
: : ; ; : Batched
| Compute Kernel:1 | | Compute Kernel:1 | ; Mesh
[ Compute Kernel:2 | Compute Kernel:2 |
[ Compute Kernel:3 | [ Compute Kernel:3 |
| Write Kernel | | Write Kernel |




SYCL: MOVING ITERATIVE LooP TO FPGA

. Jobs submitted to Jobs submitted to
O Why do we need to move Iterative loop to FPGA? queue for iter: ¢ quese for iter: t+1
= Kernel job submission overhead is significant for smaller meshes
= Explicit memory access synchronization using g.wait () on host Read Kernel Read Kernel
Buffer:A Buffer:B
. : wait
O Moving Iterative loop to each FPGA kernel Compute | | ¢ g-wal) >[[ Compue
= Read and write kernel requires both buffers A,B
. . . Write Kernel Write Kernel
= Requires a memory synchronization flag BufferB Buffer-A

= Deadlock due to dependency-based runtime scheduling

A G

Application Execution

Jobs submitted to Time Step: t Time Step: t+2

queue for all iterations

Buffer:A iy I A
Read Kernel I e :
Buffer:A,B

1

1

Compute :
Kernel :
1

Time Step: t+1 Time Step: t+1

Write Kernel :

Buffer:B,A : T
Buffer:B \/ I
Runtime Identify Read after Write : o

dependency for Buffers A,B .
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SYCL: MOVING ITERATIVE LooP TO FPGA

(J Deadlock due to runtime scheduling | Tlintel: :disable_loop_pipelining]]
. 2 for(int itr = 0; itr < n_iter; itr++) {
= Fuse read kernel and write kernel 5 accessor ptrR = ((itr & 1) == 0) 7 in : out;
4 accessor ptrW = ((itr & 1) == 1) 7 in : out;
. ' . . 5 [[intel::ivdep]] [[intel::initiation_interval(1)]]
(1 Delay pipe read (idx2) by number of iterations 6 for(int i = 0; i < total_itr+delay; i++) {
= Pipe operations are blockin 7 struct dPath16 vecR = ptrR[i+delay];
P P g 8 if(i < total_itr) pipeM::PipeAt<idxl>: :write(vicR);
= Avoids deadlock or throughput reduction due to waiting 0 CIUCT QPatnIe veew;
10 if (i >= delay) vecW = pipeM: :PipeAt<idx2>: :rea]l();
11 ptrWlil = vecW;
[ Value for delay depend on 12 , ¥
13
= Hardware schedule of pipe read and writes
= Latency due to register stages and delay buffering
Source Loca... 0 44 88 132 176 220 264 308 352 396 440 484 528 572 616 660 704 748 792 836

-

- stencil_read_write_id... - ; i

+ Cluster 80 - _q
+ Cluster 81 -

LD ADI2D FP32.cpp:86
+ Cluster 82 - ':—‘ :I
WR Jopt/intel/oneapi/co... a
| rD Jopt/intel/oneapi/co... ]["—
+ Cluster 83 - H 1
ST ADI2D FP32.cpp:94 L'A
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DELAY MODEL

Read-Write Kernel Compute kernel pipeline delay > CIkWV_ CZk’”d + S + db
Data will be available when FIFO pop is attempted
[FIFO(idxl)PUSH » Pipeline Stages |__

clky,r | S
delay < clk,,— clk,;+ S + dj, and delay > clk,,— clk,; + d,
data will be available after few clocks from first attempt
of FIFO pop, Leading to reduced throughput

FIFO(idx2) POP < Delay Buffer

clk.4 :dp
delay < clk,,,—clk.4 + dy,
Data never going to be available to pop from the FIFO
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MODEL:; PERFORMANCE

Two main components of the latency ® Delay buffer Latency
) ] ) @® | ooping Latency
= Computation latency in looping through mesh

= Cascaded compute module delay buffer latency 00000000
i T o o0o0/000oo0
Latency due to hardware pipeline s e elo oo ooee
oo eleoe 000
o o output;FIFO

(J2D Mesh runtime model e e oo
= delay,q = (Sza + dp2a)

" Soq = Z#z%ernels(clkwr,i — Clkrd,i) Compute Kernel -i ' Compute Kernel - i+1

Input FIFO

" doza = [ xpx3

sy = 1 s ([E]xrx B+ detays)

Vv Vectorization Factor

QSimilar model for 3D application is on the paper p Iterative loop unroll factor
QOver 85% accuracy D Stencil Order
m, n, | X, Y, Z dimensions of mesh
B Batch Size

Total number of iterations

Niter




APPLICATION CLASS 2 — MULTIDIMENSIONAL TRIDIAGONAL SOLVERS

1 Common in applications solving partial differential equations
using implicit schemes

= Computational fluid applications

a;ui—1 + b;u; + ciui1 =d;, 1=0,1,...., N —1

= Financial computing — option pricing bo co O s 0 Uuo do
al bl 1 ce 0 Uq dl
L Popular Tridiagonal System Solvers 0 ax by e 0 uz || do
®* Thomas algorithm X : :
= PCR i 0 0 anN—1 bN—l_ | UN-—1_ _dN—l_
= SPIKE
25 L 26 [ 27

/72 77 77

19 7 20 7 21 /s

O Popular Alternating Direction Implicit(ADI) time method
= Solves multiple systems along the coordinates

9 | 20 | 2 P s

12

. 10 | 11 12 9
. 6
= Work in Kamalakkannan et al. IC52022 shows how the TS LG
. . . . . 1 is A A7
Thomas algorithm is the more efficient for multiple solves =T o kLA | 2 L] / / %
1 .—
g 19 A A
10 | 11 | 12 126 9 /lf
1 2 3 3 ,\/4’
Q‘&

WARWICK
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(a) Batched mesh

(b) X-solve

(¢) Y-solve

(d) Z-solve




IMPLICIT SOLVERS: THOMAS SOLVER

(1 Dependency Algorithm 1: thomas(a, b, c, d) A(i+2) B(i+2) C(i+2)
= Between iterations in forward loop and backward loop 1: dy do/bo A(i+1) b B(i+1) C(i+1)
= Between two loops 2: ¢f + co/bo A() ci-) ||| Ba) c(i)
O Can’t achieve initiation interval =1 3: fori=1,2,.., N —1do
*
= Floating point arithmetic operations are multi clock cycle 4 1 1/(bi — aici_y) N
. * . . *
= |f iteration latency for FW loop /sand BW loop /, 5. di < r(di — aidi_;) ’
. * .
= Arithmetic pipeline is not effectively used 6: ¢ TG
= Total number of clock cycles is: Nx(I¢ + 1) v §nd-forN 0 10d > Div < [1.0f]
8: Ior 1 = — 2, ... (0]
 FW loop and BW loop executes one after another L. o
9: d; < dz — C; di_|_1
10: end for Mul €
] ] 11: return d
On Chip On Chip Inter lteration
Memory Memory dependency
C(i)
C(i-1)
C(i-2)
[ FW loop ] [ BW loop ] [ FW loop ] [ BW loop ] r<+ 1/(b; — aic:—l)
C; < Tre;
> >
FW Unit active BW Unit active
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THOMAS SOLVER: BATCHING AND DATAFLOW OPTIMIZATIONS

L Group of Systems can be solved interleaved manner
= Fully utilizing arithmetic pipeline
= group size should be equal or higher than iteration latency I/l
= Assume group size g = max (I¢, 1)

L Improves the average clocks to N for each loop

[ Latency to solve single system will remain same

1 Double buffering to execute FW loop and BW loop in parallel
= Dual port memory
= Separate partition for memory read and write

Ping Pong
Buffer

Y

Ping Pong
Buffer

Y

Batch
:n+1

—)[ FW loop ] [ BW loop ]—) B?t;:h
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THOMAS SOLVER: ON-CHIP MEMORY REQUIREMENT

L On-chip memory is the key and limiting resource when solving reasonably larger system on FPGA
= Each data structure requires 2gN words
= g number of interleaved systems with size N
= Twice memory requirement due to ping pong buffer l

Inter - leaving
systems

l

memory cost =7 RAMs X 2gN words/RAM FW Solve

l

BW Solve

l

Storage - a, b, c,d

Storage - c*,d*

Storage - u
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THOMAS SOLVER: ON-CHIP MEMORY OPTIMIZATION

[ Coefficient (a, b, ¢) can be calculated for some implicit applications
= Coefficient generation can be fused to Thomas forward solve
= Saves storage required for (a,b,c) in Thomas interleave
= 49% reduction of on chip memory requirement

1 Reducing required group size will help to save on-chip memory.
= Decoupling high latency floating-point based computation r to separate kernel
= Having only DSP supported FP ADD/SUB/MUL in other three kernels reduce group size
= Save 40% on chip memory compared to fused version.

Algorithm 1: thomas(a, b, ¢, d)
1: dS < do/bo
2: CS < Co/bo
3: fori=1,2,....,. N —1do
4: T < 1/(()@ — az-c;‘_l)
5
6
7

*k *k
c; & re;
- end for

Storage - r

l

Inter - leaving
systems

l

r_generator

FW Solve

l

BW Solve

l

Storage - d

Storage - c*,d*

Storage - u
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PERFORMANCE — INTEL PAC D5005 vs. Nvibia V100

1 Two representative applications FPGA Intel PAC D5005
= RTM_forward — 3D, 25-point stencils, vector elements DSP blocks 5760
= 2D ADI FP32 - 2D Heat Diffusion Equation using MLABs / M20K  7.6MB / 29.3 MB
| ing di ion implici hod DDR4 64GB, 76.8GB/s, in 4 banks (1 channel/bank)
alternating direction implicit metho Host Intel Xeon Platinum 8256 @3.8GHz
(16 CPUs, 4 cores each)
3 FPGA kernels implemented using SYCL (DPC++) _ 1559 GB RAM, Ubuntu 18.04.6 LTS
Design SW Intel oneAPI 2021.4.0, Intel Quartus software 19.2
board_variant pac_s10
L GPU implementation using CUDA GPU Nvidia Tesla V100 PCle
= RTM forward using OPS framework Global Mem. 16GB HBM2, 900GB/s
= 2D ADI FP32 using Trid solver library Host Intel Xeon Gold 6252 @2.10GHz (48 cores)
_ ] 256GB RAM, Ubuntu 18.04.3 LTS
https://github.com/OP-DSL/tridsolver Compilers, OS  nvee CUDA 10.0.130, Debian 9.11

= Equivalent or better performance than NVIDIA cuSPARSE

O Comparison — Intel PAC D5005 Vs Nvidia V100 - |psoos |vieo |

= Time to solution

TeraFLOPS (FP32) 9.2 14
= Bandwidth
Memory Bandwidth (GB/s) 76.8 900
= Power
PCle Bandwidth (GB/s) 32 32

 Fair comparison — GPU is saturated by batching
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RTM_FORWARD RESULTS — INTEL D5005 Vs Nvibia V100

10° |:| GPU-100B —A— FPGA-100B
- GPU-10B —A— FPGA-10B
==+ FPGA-Pred
1: fori=0, i < njter, i ++ do
2 K:fpml(YZSPt,,D,,U)th;T:Y+K/2; S:K/6 2 1001
3 K= fomi(Tospe, o p)) Xdt; T=Y+K/2; S=S+K[/3 § z
4 K= fomi(Tospt, ps ) Xdt; T=Y+K; S=S+K/3 ’ >
5. K= fymi(Tospr, pop) X dt; Y =Y + S+ K/6 5
3 1071
6: end for . [
O

10x10x10 16Xx16Xx16 22x22x22 28x28x28 34x34x34 40x40x40
Mesh Size

Mesh=40%3, B=100, iter=200, Energy(J) Mesh=40%3, B=100, iter=200, Effe-Bandwidth(GB/s)
V100 344.7 V100 =)

psoos | osoos |

0 100 200 300 400 0 100 200 300 400 500
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2D ADI FP32 — INTEL D5005 Vs Nvipia V100

Mesh=64%2, B=4000, iter=16000

Mesh=64%2, B=4000, iter=16000, Energy(kJ) Effe-Bandwidth(GB/s)

1: for 1 = 0,17 < Njter, 2 + + do

2: Calculate RHS : V100 2 58 V100-Ydim 555
d= f?pt(u)’a — _71771) =7 C= _71'7

3:  Tridslv(x-dim), update d

4:  Tridslv(y-dim), update d D5005 - D5005 S

5

6:

V100-Xdim 205

u=u-+d

0 2 4 6 8 200 400 600
end for 0
X
16 columns
y Read 64 bytes 102 -l GPU-800B -’- GPU_opt_est-800B
Steps [ fioas fromts  flosts floscs 0 GPU-40008 ) GPU_opt_est-4000B
EEENEENEENEEREEN SECDIRY {01101 [0] 10X 1% S 1N 1 024 124 121 b2 21 B Bl S 3 + FPGA-800B - == FPGA-Pred
g 1 SECpNZ] |[0]10] (0] (o) 1% E1 w1 10 k24 121 521 124 131 131 13118 I
& IENEuASREERaE stes 3| [ofoll0o/1/1/11/222/2/3033(3] * ~A- FPGA-4000B O
¥ Eiasdmsaanaaeas [0lofolof1]1l1]1]2]2[2[2]3]3]3]3 N O
o L Step 1 (4444555566667777 —
EEEREREREAnRREN step'2l |[44[allas 55566667777 - 3
EENENEENERNEREEE 'step 3| |4/44 4l[55/5/56ll666777|7 QO; C
SNEEENNEEEEEEEER nnEEEE m 8
[}
lillllllllllllll L
= 1|
5 10
£
| float a[l6] | E
Thread 0: float reg[l6] = [0 0 00O 0O00000O0O0OO0OO0OO0O [0} é
Source, Thread 1: float reg(16] =[1/1//a/1 12 [2/ala/a/1laa/ala 2|
. Thread 2: float reg([16] =[|22/22 2222 22222/222 H
Slo-e oo el 30313]30313(303)3]303]3]313]3]:
TOMSZO].G Thread 4: float req(16] = (4 4 4 4 4 44 444444444 O
Thread 5: float reg[l6] = 52 |51515 5135151 B3 35151515 :)
Thread 6: float reg(16] = |6 6 6 6 6 6 6 6 6 6 666666 &
Thread 7: float reg[l6] = [ 100 1

32x32 40x40 48x48 56x56 64x64
Fig. 9. Local transpose with registers. Mesh Size




LESSONS LEARNT

[ SYCL offer Functional portability, but significant customization is required to gain decent performance on FPGAs
= Kernel to Kernel communication to overcome global memory bandwidth
= Custom memory hierarchy design for better data reuse

[ Significant effort required for applying non-trivial transformation to get optimized SYCL implementation
= Programming overheads still dominating on FPGAs

1 FPGAs could challenge GPUs for (small) subset of HPC applications
= Competitive or better performance on FPGA compared to current best traditional architecture (GPUs)
= Significant energy saving on FPGA
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CONCLUSION AND NEXT STEPS

(1 Used SYCL to design and develop structured mesh solvers on Intel FPGAs
= Structured mesh based explicit stencil solvers — workflow for any stencil solver
= Multiple multidimensional tridiagonal system solvers - best implementation based on Thomas algorithm

[ Key Challenges for near optimal performance
= Reducing kernel call overhead my moving iterative loop to FPGA
= Reducing on chip memory usage by decoupling computation in Thomas forward loop

L Performance of solutions synthesized on an Intel D5005 FPGA
= designs for non-trivial, production representative applications
= Competitive performance compared to optimal implementation of same applications on Nvidia-V100
= 59%-76% energy saving on FPGA for largest configuration of each application case

1 Next steps
= Automating code generation of structured mesh applications to target FPGAs using SYCL
= Exploring the performance on Intel FPGAs with HBM

Stencil Solvers . https://github.com/Kamalavasan/StencilsOnFPGA
Tridiagonal Solvers : https://github.com/Kamalavasan/Tridsolver-FPGA
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