
1

FPGA ACCELERATION OF STRUCTURED-MESH-BASED EXPLICIT AND
IMPLICIT NUMERICAL SOLVERS USING SYCL
Kamalavasan Kamalakkannan, Gihan R. Mudalige
University of Warwick, UK

Istvan Z. Reguly
Pazmany Peter Catholic University, Hungary

Suhaib A. Fahmy
King Abdullah University of Science and Technology, Saudi Arabia

Email: kamalavasan.kamalakkannan@warwick.ac.uk

WHY FPGAS FOR HPC APPLICATIONS

q Field Programmable Gate Arrays (FPGAs) gaining traction as accelerator devices competitive to traditional architectures
Examples :
§ Deep Neural Networks (DNN) – Binq, Baidu
§ Financial computing
§ Databases

q Attractive features of FPGAs
§ High Performance for parallel algorithms – data-flow model
§ Energy efficient
§ Low latency
§ Reconfigurability – Software Defined Accelerator (SDA)

q FPGA programming made easier than before with powerful tools and hardware capabilities
§ Introduction of High-Level Synthesis (HLS) tools
§ HBM memory
§ Hardware single precession cores
§ Cloud FPGA node instances

qFPGA device consists of configurable elements to implement an
algorithm or application in a digital circuit
§ Adaptive Logic Modules(ALMs) – Look Up Tables(LUTs) and Registers
§ Random Access Memory Blocks – 640-bit MLABs and 20K bit M20K
§ Digital Signal Processing Blocks(DSPs)
§ Routing Fabrics to connect circuit elements
§ Hardened blocks – Memory Controller, PCIe , Clock Modules

qFPGA accelerator card additionally consists of big DDR4 memories,
Network interfaces and PCIe interface to communicate with Host

qChallenge is generating optimal circuit for an application using a high-
level language and requiring low level customization
§ User has to design memory hierarchy
§ Balance throughput and device resource consumption across many kernels
§ Design should consider larger reconfiguration time opposed to GPU kernel calls
§ Evolving HLS tools and limited debugging facilities

Partial Reconfiguration
 Region

DDR4

DDR4 Memory controller

Memory Interface

PCIe Gen3x16

Platform
Management

HSSI PHY

QSFP+

QSFP+

DDR4 DDR4 DDR4

H
Igh Speed Serial
Interface(H

SSI)

Host

Cache Interface

Intel PAC D5005

St
ra

tix
 1

0
G

X
FP

G
A

PCIe Bus

ALM
RAMs
DSPs

FPGA DEVICE AND PROGRAMMING CHALLENGE

q Extending previous work for synthesizing structured-mesh solvers on Xilinx FPGAs
§ Kamalakkannan et. al IPDPS2021 - High-Level FPGA Accelerator Design for Structured-Mesh-Based Explicit Numerical Solvers
§ Kamalakkannan et. al ICS2022 - High Throughput Multidimensional Tridiagonal System Solvers on FPGAs

q In this work, we develop workflow to target same class of applications on Intel FPGAs using SYCL

q Codify design using SYCL by Overcoming challenges for gaining near-optimal performance :
§ Reducing kernel call overhead by moving iterative loop to FPGA
§ On chip memory saving for Thomas solver implementation using decoupled computation of forward loop

q Use design workflow for implementing two representative applications on Intel D5005 FPGA
§ Showcase use of SYCL to implement nontrivial application on FPGAs
§ Performance comparison with Nvidia V100 - compare best implementation on both architectures !
§ Competitive performance and significant energy saving is achieved compared to GPUs

CONTRIBUTIONS

qFPGAs for HPC – Motivation and challenges

qContributions

q Application Class 1 - Stencil Solvers
§ Primitive Design
§ Challenges and Optimizations when using SYCL
§ [Performance Models]

q Application Class 2 - Multidimensional Tridiagonal System Solvers
§ Thomas Solver
§ Challenges and Optimizations when using SYCL - on chip memory saving optimization
§ [Performance models]

q Performance
§ Runtime and Bandwidth
§ Energy consumption

q Lessons learnt and Conclusions

OUTLINE

q Finite Difference Methods(FDM) used to solve PDEs numerically,
q Stencils used to specify required points

q Naturally parallel – all cells could be updated in parallel

for t in range (niter) {
for x in range (height) {
for y in range (width) {
𝑈!,#$%& = k1×𝑈!'&,#$ + k2×𝑈!,#'&$ + k3×𝑈!%&,#$ + k4× 𝑈!,#%&$ + k5×𝑈!,#$

}
}

}

Time Step: t

Time Step: t+1

APPLICATION CALSS 1 - STRUCTURED MESH BASED EXPLICIT STENCIL SOLVERS

SYCL: WORK GROUP BASED STENCIL IMPLEMENTATION

q Pros
§ Familiar GPU implementation style

q Cons
§ Performance depends on lower global memory bandwidth on FPGAs
§ Multiple memory access => multi-port cache
§ Required cache size unknown at compile time
§ Kernel to Kernel communication using pipes is not possible

[more on this later !]

1 using namespace sycl;
2 void stencil_WI(queue &q,
3 buffer<float,2> b_data_in,
4 buffer<float,2> b_data_out,
5 int size0, int size1,
6 int block0, int block1){
7 q.submit([&] (handler& h){
8 accessor in(b_data_in, h);
9 accessor out(b_data_out, h);

10

11 range<2> local_range(block0, block1);
12 range<2> global_range(size0, size1);
13

14 h.parallel_for<class stencil_WI>
15 (nd_range<2>(local_range, global_range),
16 [=] (nd_item<2> point){
17 int y = point.get_global_id(0);
18 int x = point.get_global_id(1);
19 if(x > 0 && y > 0 && x < size0-1 && y < size1-1){
20 float r = (in[y-1][x] + in[y+1][x])*0.125f +
21 in[y][x]*0.5f;
22 out[y][x] = r;
23 }
24 });});
25 }

Figure 1: NDRange based stencil computation

1

1 using namespace sycl;
2 void stencil_ST(queue &q,
3 buffer<float,2> &b_data_in,
4 buffer<float,2> &b_data_out,
5 int size0, int size1){
6 q.submit([&] (handler& h){
7 accessor in(b_data_in, h);
8 accessor out(b_data_out, h);
9 h.single_task<class stencil_ST> ([=] (){

10 float window1[MAX_DIM];
11 float window2[MAX_DIM];
12 float s_1_0, s_0_1, s_1_1, s_2_1, s_1_2;
13 /* +1 due to one row delay through window buffer */
14 int total_itr = (size1+1)*size0;
15 for(int i = 0; i < total_itr; i++){
16 int x = itr % size0;
17 int y = itr / size0;
18 int ptr = itr % (size0-1);
19

20 s_1_0 = window2[ptr];
21 s_0_1 = s_1_1;
22 window2[ptr] = s_1_1;
23 s_1_1 = s_2_1;
24 s_2_1 = window1[ptr];
25 if(y < size1) s_1_2 = in[y][x];
26 window1[ptr] = s_1_2;
27 float r = (s_1_0 +s_0_1 + s_2_1+ s_1_2)*0.125f + \
28 s_11*0.5f;
29 if(x > 0 && y > 0 &&
30 x < size0-1 && y < size1){
31 out[y-1][x] = r;
32 }
33 }
34 });});
35 }

Figure 1: single task based stencil computation

1

SYCL: SINGLE TASK IMPLEMENTATION OF STENCIL SOLVER

1 using namespace sycl;
2 void stencil_ST(queue &q,
3 buffer<float,2> &b_data_in,
4 buffer<float,2> &b_data_out,
5 int size0, int size1){
6 q.submit([&] (handler& h){
7 accessor in(b_data_in, h);
8 accessor out(b_data_out, h);
9 h.single_task<class stencil_ST> ([=] (){

10 float window1[MAX_DIM];
11 float window2[MAX_DIM];
12 float s_1_0, s_0_1, s_1_1, s_2_1, s_1_2;
13 /* +1 due to one row delay through window buffer */
14 int total_itr = (size1+1)*size0;
15 for(int i = 0; i < total_itr; i++){
16 int x = itr % size0;
17 int y = itr / size0;
18 int ptr = itr % (size0-1);
19

20 s_1_0 = window2[ptr];
21 s_0_1 = s_1_1;
22 window2[ptr] = s_1_1;
23 s_1_1 = s_2_1;
24 s_2_1 = window1[ptr];
25 if(y < size1) s_1_2 = in[y][x];
26 window1[ptr] = s_1_2;
27 float r = (s_1_0 +s_0_1 + s_2_1+ s_1_2)*0.125f + \
28 s_11*0.5f;
29 if(x > 0 && y > 0 &&
30 x < size0-1 && y < size1){
31 out[y-1][x] = r;
32 }
33 }
34 });});
35 }

Figure 1: single task based stencil computation

1

SYCL: VECTORIZATION

q Vectorization Factor: Number of mesh points updated at same clock
§ Called the "Cell parallel" method in Waidyasooriya et al. 2017

q Demands bandwidth proportional to vectorization factor
q On-chip memory requirement ideally same as primitive design

1 /* Data type for wider data path */

2 struct dPathV {[[intel::fpga_register]]float data[VFACTOR];};

3

4 struct dPathV window1[MAX_DIM/VFACTOR];

5 struct dPathV window2[MAX_DIM/VFACTOR];

6 struct dPathV s_1_0, s_0_1, s_1_1, s_2_1, s_1_2, vec_wr;

7 for(int i = 0; i < total_itr; i++){

8 /* other declarations, index calculation, window buffer*/

9 float mid_l[VFACTOR+2] = {s_0_1.data[VFACTOR-1], \

10 s_1_1.data[0], .. , s_1_1.data[VFACTOR-1] , s_2_1.data[0]};

11 # pragma unroll VFACTOR

12 for(int v = 0; v < VFACTOR; v++){

13 int i_ind = i *VFACTOR + v;

14 float val = (s_1_0.data[v]+s_1_2.data[v] + mid_l[v] + \

15 mid_l[v+2])*0.125f+ s_1_1.data[v]*0.5f;

16 bool cond = (i_ind>0 && i_ind<size0-1 && j>1 && j<size1);

17 vec_wr.data[v]= cond ? val : s_1_1.data[v];

18 }

19 /* writing results to pipe */

20 }

Figure 1: vectored stencil computation

1

Time Step :t

Time Step :t+1

Time Step t

Time Step t+1

SYCL: ITERATIVE LOOP UNROLLING

q Multiple Iterations in Parallel
§ Called as “Step parallel” method in Waidyasooriya et al. 2017

q Does not cost external memory Bandwidth
q On-chip memory ∝ unroll factor

External
Memory

(DDR4/HBM)

Read Kernel

Compute
Kernel:1

Write Kernel

FIFO

FIFO

AXI

AXI

Compute
Kernel:2

FIFO
*Previous works utilized this technique - Waidyasooriya2017, soda2018

1 template <int N> struct itr_loop {
2 static void instantiate(queue &q, int nx, int ny){
3 itr_loop<N-1>::instantiate(q, nx, ny);
4 stencil_compute<N-1, 4096, 8>(q, nx, ny);
5 }
6 };
7 template<> struct itr_loop<1>{
8 static void instantiate(queue &q, int nx, int ny){
9 stencil_compute<0, 4096, 8>(q, nx, ny);

10 }
11 };

Figure 1: Pipelining stencil compute kernels

1

SYCL: BATCHING

q Pipeline latency becomes significant
for smaller grids

q Batching on last dimension
q Reduce latency per mesh
q No SYCL specific constructs required

for batched processing

Input Point

Output Point

Delay
Delay

Compute Kernel:1 Compute Kernel:2

Compute Kernel:1

Read Kernel

Compute Kernel:2

Time

Read Kernel

Compute Kernel:2

Compute Kernel:3

Write Kernel

Time

kernel:1 Idle

Mesh:1

Compute Kernel:3

Write Kernel

Compute Kernel:1

Read Kernel

Compute Kernel:2

Compute Kernel:3

Write Kernel

Compute Kernel:1

Read Kernel

Compute Kernel:2

Compute Kernel:3

Write Kernel

Compute Kernel:1

Read Kernel

Compute Kernel:2

Compute Kernel:3

Write Kernel

Compute Kernel:1
Batched

Mesh

Mesh:2

Read Kernel

Compute Kernel:2

Compute Kernel:3

Write Kernel

kernel:1 Idle

Compute Kernel:1

kernel:1 Idlekernel:1 Idle kernel:1 Idlekernel:1 Idle

Mesh:1, Itr:1 Mesh:1, Itr:2 Mesh:2, Itr:1 Mesh:2, Itr:2

Mesh:(1,2), Itr:1 Mesh:(1,2), Itr:2

SYCL: MOVING ITERATIVE LOOP TO FPGA

q Why do we need to move Iterative loop to FPGA?
§ Kernel job submission overhead is significant for smaller meshes
§ Explicit memory access synchronization using q.wait()on host

q Moving Iterative loop to each FPGA kernel
§ Read and write kernel requires both buffers A,B
§ Requires a memory synchronization flag
§ Deadlock due to dependency-based runtime scheduling

Read Kernel
Buffer:A,B

Compute
Kernel

Write Kernel
Buffer:B,A

Jobs submitted to
 queue for all iterations

Runtime Identify Read after Write
dependency for Buffers A,B

Time Step: t

Time Step: t+1

Time Step: t+2

Time Step: t+1

Buffer:A

Buffer:B

Read Kernel
Buffer:A

Compute
Kernel

Write Kernel
Buffer:B

Read Kernel
Buffer:B

Compute
Kernel

Write Kernel
Buffer:A

q.wait()

Application Execution

Jobs submitted to
 queue for iter: t

Jobs submitted to
 queue for iter: t+1

SYCL: MOVING ITERATIVE LOOP TO FPGA

q Deadlock due to runtime scheduling
§ Fuse read kernel and write kernel

q Delay pipe read (idx2) by number of iterations
§ Pipe operations are blocking
§ Avoids deadlock or throughput reduction due to waiting

q Value for delay depend on
§ Hardware schedule of pipe read and writes
§ Latency due to register stages and delay buffering

1 [[intel::disable_loop_pipelining]]
2 for(int itr = 0; itr < n_iter; itr++) {
3 accessor ptrR = ((itr & 1) == 0) ? in : out;
4 accessor ptrW = ((itr & 1) == 1) ? in : out;
5 [[intel::ivdep]] [[intel::initiation_interval(1)]]
6 for(int i = 0; i < total_itr+delay; i++) {
7 struct dPath16 vecR = ptrR[i+delay];
8 if(i < total_itr) pipeM::PipeAt<idx1>::write(vecR);
9 struct dPath16 vecW;

10 if(i >= delay) vecW = pipeM::PipeAt<idx2>::read();
11 ptrW[i] = vecW;
12 }
13 }

Figure 1: Global memory read-write loop

1

DELAY MODEL

Pipeline Stages
:S

Delay Buffer
:db

FIFO(idx1) PUSH
clkwr

FIFO(idx2) POP
clkrd

Read-Write Kernel Compute kernel pipeline

Data will be available when FIFO pop is attempted

data will be available after few clocks from first attempt
of FIFO pop, Leading to reduced throughput

Data never going to be available to pop from the FIFO

delay < clkwr – clkrd+ S + db and delay > clkwr – clkrd + db

delay < clkwr –clkrd + db

delay > clkwr – clkrd + S + db

MODEL: PERFORMANCE

qTwo main components of the latency
§ Computation latency in looping through mesh
§ Cascaded compute module delay buffer latency
§ Latency due to hardware pipeline

q2D Mesh runtime model
§ 𝑑𝑒𝑙𝑎𝑦!" = 𝑆!" + 𝑑#,!"

§ 𝑆!" = ∑%&'#)*+,*-.(𝑐𝑙𝑘/+,% − 𝑐𝑙𝑘+",%)

§ 𝑑#,!" =
0
1 × 𝑝 × 2

!

§ 𝐶𝑙𝑘𝑠() =
*!"#$
+

× ,
-
× 𝑛 × 𝐵 + 𝑑𝑒𝑙𝑎𝑦(.

qSimilar model for 3D application is on the paper
qOver 85% accuracy

Symbol Parameter

V Vectorization Factor

p Iterative loop unroll factor

D Stencil Order

m, n, l X, Y, Z dimensions of mesh

B Batch Size

𝑛/$01 Total number of iterations

Delay buffer Latency
Looping Latency

Compute Kernel - i Compute Kernel - i+1

Input FIFO

output FIFO

APPLICATION CLASS 2 – MULTIDIMENSIONAL TRIDIAGONAL SOLVERS

q Common in applications solving partial differential equations
using implicit schemes
§ Computational fluid applications
§ Financial computing – option pricing

q Popular Tridiagonal System Solvers
§ Thomas algorithm
§ PCR
§ SPIKE

q Popular Alternating Direction Implicit(ADI) time method
§ Solves multiple systems along the coordinates
§ Work in Kamalakkannan et al. ICS2022 shows how the

Thomas algorithm is the more efficient for multiple solves

1 2 3

10 11 12

19 20 21

1 2 3

10 11 12

19 20 21

3
6

9
12

15
18

21
24

27
3

6
9

12
15

18
21

24
27

25 26 27
22 23 24

19 20 21

(a) Batched mesh (b) X-solve (c) Y-solve (d) Z-solve

Dim-X Di
m
-Y

D
im

-Z

b
at
ch

si
ze
=
2

1

aiui�1 + biui + ciui+1 = di, i = 0, 1, ..., N � 1 (1)
2

66664

b0 c0 0 . . . 0
a1 b1 c1 . . . 0
0 a2 b2 . . . 0
...

...
...

. . .
...

0 0 . . . aN�1 bN�1

3

77775

2

66664

u0

u1

u2
...

uN�1

3

77775
=

2

66664

d0
d1
d2
...

dN�1

3

77775
(2)

1

IMPLICIT SOLVERS: THOMAS SOLVER

q Dependency
§ Between iterations in forward loop and backward loop
§ Between two loops

q Can’t achieve initiation interval II=1
§ Floating point arithmetic operations are multi clock cycle
§ If iteration latency for FW loop lfand BW loop lb
§ Arithmetic pipeline is not effectively used
§ Total number of clock cycles is: 𝑁× 𝑙3 + 𝑙#

q FW loop and BW loop executes one after another

Algorithm 1: thomas(a, b, c, d)

1: d⇤0 d0/b0
2: c⇤0 c0/b0
3: for i = 1, 2, ..., N � 1 do
4: r 1/(bi � aic⇤i�1)
5: d⇤i r(di � aid⇤i�1)
6: c⇤i rci
7: end for
8: for i = N � 2, ..., 1, 0 do
9: di d⇤i � c⇤i di+1

10: end for
11: return d

1

FW loop BW loop

On Chip
Memory

FW loop BW loop

On Chip
Memory

FW Unit active BW Unit active

Mul

A(i) C(i-1)

Div

C(i)B(i)

Mul

A(i+1)

A(i+2)

B(i+1)

B(i+2)

C(i+1)

C(i+2)

C(i)

C(i-1)

C(i-2)

Inter Iteration
dependency

Sub

1.0f

THOMAS SOLVER: BATCHING AND DATAFLOW OPTIMIZATIONS

q Group of Systems can be solved interleaved manner
§ Fully utilizing arithmetic pipeline
§ group size should be equal or higher than iteration latency lf /lb
§ Assume group size g = max (lf , lb)

q Improves the average clocks to N for each loop

q Latency to solve single system will remain same

q Double buffering to execute FW loop and BW loop in parallel
§ Dual port memory
§ Separate partition for memory read and write

FW loop BW loopBatch
: n

FW loop BW loop

Ping Pong
Buffer

Ping Pong
Buffer

Batch
: n-1

Batch
: n+1

Batch
: n

THOMAS SOLVER: ON-CHIP MEMORY REQUIREMENT

q On-chip memory is the key and limiting resource when solving reasonably larger system on FPGA
§ Each data structure requires 2gN words
§ g number of interleaved systems with size N
§ Twice memory requirement due to ping pong buffer

Inter - leaving
systems

Storage - a, b, c, d

FW Solve

BW Solve

Storage - c*,d*

Storage - u

𝑚𝑒𝑚𝑜𝑟𝑦 𝑐𝑜𝑠𝑡 = 7 𝑅𝐴𝑀𝑠 × 2𝑔𝑁 𝑤𝑜𝑟𝑑𝑠/𝑅𝐴𝑀

THOMAS SOLVER: ON-CHIP MEMORY OPTIMIZATION

q Coefficient (a,b,c) can be calculated for some implicit applications
§ Coefficient generation can be fused to Thomas forward solve
§ Saves storage required for (a,b,c) in Thomas interleave
§ 49% reduction of on chip memory requirement

q Reducing required group size will help to save on-chip memory.
§ Decoupling high latency floating-point based computation r to separate kernel
§ Having only DSP supported FP ADD/SUB/MUL in other three kernels reduce group size
§ Save 40% on chip memory compared to fused version.

Inter - leaving
systems

Storage - d

FW Solve

BW Solve

Storage - c*,d*

Storage - u

r_generator

Storage - r

Algorithm 1: thomas(a, b, c, d)

1: d⇤0 d0/b0
2: c⇤0 c0/b0
3: for i = 1, 2, ..., N � 1 do
4: r 1/(bi � aic⇤i�1)
5: d⇤i r(di � aid⇤i�1)
6: c⇤i rci
7: end for
8: for i = N � 2, ..., 1, 0 do
9: di d⇤i � c⇤i di+1

10: end for
11: return d

1

PERFORMANCE – INTEL PAC D5005 VS. NVIDIA V100

q Two representative applications
§ RTM_forward – 3D, 25-point stencils, vector elements
§ 2D ADI FP32 – 2D Heat Diffusion Equation using

alternating direction implicit method

q FPGA kernels implemented using SYCL (DPC++)

q GPU implementation using CUDA
§ RTM forward using OPS framework
§ 2D ADI FP32 using Trid solver library

https://github.com/OP-DSL/tridsolver
§ Equivalent or better performance than NVIDIA cuSPARSE

q Comparison – Intel PAC D5005 Vs Nvidia V100
§ Time to solution
§ Bandwidth
§ Power

q Fair comparison – GPU is saturated by batching

D5005 V100

TeraFLOPS (FP32) 9.2 14

Memory Bandwidth (GB/s) 76.8 900

PCIe Bandwidth (GB/s) 32 32

FPGA Intel PAC D5005

DSP blocks 5760
MLABs / M20K 7.6MB / 29.3 MB
DDR4 64GB, 76.8GB/s, in 4 banks (1 channel/bank)
Host Intel Xeon Platinum 8256 @3.8GHz

(16 CPUs, 4 cores each)
1559 GB RAM, Ubuntu 18.04.6 LTS

Design SW Intel oneAPI 2021.4.0, Intel Quartus software 19.2
board variant pac s10

GPU Nvidia Tesla V100 PCIe

Global Mem. 16GB HBM2, 900GB/s
Host Intel Xeon Gold 6252 @2.10GHz (48 cores)

256GB RAM, Ubuntu 18.04.3 LTS
Compilers, OS nvcc CUDA 10.0.130, Debian 9.11

1

http://https:0/github.com/OP-DSL/tridsolver

RTM_FORWARD RESULTS – INTEL D5005 VS NVIDIA V100

418

379

0 100 200 300 400 500

D5005

V100

Mesh=40^3, B=100, iter=200, Effe-Bandwidth(GB/s)

141.3

344.7

0 100 200 300 400

D5005

V100

Mesh=40^3, B=100, iter=200, Energy(J)

2D ADI FP32 – INTEL D5005 VS NVIDIA V100

463

205

555

0 200 400 600

D5005

V100-Xdim

V100-Ydim

Mesh=64^2, B=4000, iter=16000
Effe-Bandwidth(GB/s)

1.82

7.58

0 2 4 6 8

D5005

V100

Mesh=64^2, B=4000, iter=16000, Energy(kJ)
Algorithm 1: 2D ADI Heat Di↵usion Application

1: for i = 0, i < niter, i++ do
2: Calculate RHS :

d = f7pt(u), a =
�1
2 �, b = �, c = �1

2 �
3: Tridslv(x-dim), update d
4: Tridslv(y-dim), update d
5: u = u+ d
6: end for

1

Source:
TOMS2016

LESSONS LEARNT

q SYCL offer Functional portability, but significant customization is required to gain decent performance on FPGAs
§ Kernel to Kernel communication to overcome global memory bandwidth
§ Custom memory hierarchy design for better data reuse

q Significant effort required for applying non-trivial transformation to get optimized SYCL implementation
§ Programming overheads still dominating on FPGAs

q FPGAs could challenge GPUs for (small) subset of HPC applications
§ Competitive or better performance on FPGA compared to current best traditional architecture (GPUs)
§ Significant energy saving on FPGA

CONCLUSION AND NEXT STEPS

q Used SYCL to design and develop structured mesh solvers on Intel FPGAs
§ Structured mesh based explicit stencil solvers – workflow for any stencil solver
§ Multiple multidimensional tridiagonal system solvers - best implementation based on Thomas algorithm

q Key Challenges for near optimal performance
§ Reducing kernel call overhead my moving iterative loop to FPGA
§ Reducing on chip memory usage by decoupling computation in Thomas forward loop

q Performance of solutions synthesized on an Intel D5005 FPGA
§ designs for non-trivial, production representative applications
§ Competitive performance compared to optimal implementation of same applications on Nvidia-V100
§ 59%-76% energy saving on FPGA for largest configuration of each application case

q Next steps
§ Automating code generation of structured mesh applications to target FPGAs using SYCL
§ Exploring the performance on Intel FPGAs with HBM

Stencil Solvers : https://github.com/Kamalavasan/StencilsOnFPGA
Tridiagonal Solvers : https://github.com/Kamalavasan/Tridsolver-FPGA

https://github.com/Kamalavasan/StencilsOnFPGA
https://github.com/Kamalavasan/Tridsolver-FPGA

REFERENCES AND ACKNOWLEDGEMENTS

References
§ Waidyasooriya2017: H. M. Waidyasooriya, Y. Takei, S. Tatsumi and M. Hariyama, "OpenCL-Based FPGA-Platform for Stencil Computation and Its Optimization

Methodology," in IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 5, pp. 1390-1402, 1 May 2017, doi: 10.1109/TPDS.2016.2614981.

§ Soda2018: Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. 2018. SODA: stencil with optimized dataflow architecture. In Proceedings of the International
Conference on Computer-Aided Design (ICCAD '18). Association for Computing Machinery, New York, NY, USA, Article 116, 1–8.
DOI:https://doi.org/10.1145/3240765.3240850

§ 3dRTM2011: Haohuan Fu and Robert G. Clapp. 2011. Eliminating the memory bottleneck: an FPGA-based solution for 3d reverse time migration. In Proceedings of
the 19th ACM/SIGDA international symposium on Field programmable gate arrays (FPGA '11). Association for Computing Machinery, New York, NY, USA, 65–74.
DOI:https://doi.org/10.1145/1950413.1950429

§ IPDPS2021: Kamalakkannan, K., Mudalige, G.R., Reguly, I.Z. and Fahmy, S.A., 2021, May. High-level FPGA accelerator design for structured-mesh-based explicit
numerical solvers. In 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS) (pp. 1087-1096). IEEE.

§ ICS2022: Kamalakkannan, K., Reguly, I. Z., Fahmy, S. A., and Mudalige, G. R. (2022). High Throughput Multidimensional Tridiagonal Systems Solvers on FPGAs. In
Proceedings of the ACM International Conference on Supercomputing (ICS ‘22). Association for Computing Machinery, New York, NY, USA (Accepted)

§ TOMS2016: Endre László, Mike Giles, and Jeremy Appleyard. 2016. Manycore Algorithms for Batch Scalar and Block Tridiagonal Solvers. ACM Trans. Math. Softw. 42,
4, Article 31 (July 2016), 36 pages. https://doi.org/10.1145/2830568

Acknowledgements
q Gihan Mudalige was supported by the Royal Society Industry Fellowship Scheme (INF/R1/1800 12)
q Istvan Reguly was supported by National Research, Development and Innovation Fund of Hungary(PD 124905)
q We are grateful to Intel for providing access to devcloud
q We are grateful to Jacques Du Toit and Tim Schmielau at NAG UK for the RTM application

