FPGA ACCELERATION OF STRUCTURED-MESH-BASED EXPLICIT AND
IMPLICIT NUMERICAL SOLVERS USING SYCL

Kamalavasan Kamalakkannan, Gihan R. Mudalige
University of Warwick, UK

Istvan Z. Reguly
Pazmany Peter Catholic University, Hungary

Suhaib A. Fahmy
King Abdullah University of Science and Technology, Saudi Arabia

Email: kamalavasan.kamalakkannan@warwick.ac.uk

IWOCL & SYCLcon 2022 ' '

WARWICK

THE UNIVERSITY OF WARWICK

VIRTUAL | MAY 10-12




WHY FPGAS FOR HPC APPLICATIONS

[ Field Programmable Gate Arrays (FPGAs) gaining traction as accelerator devices competitive to traditional architectures
Examples :
= Deep Neural Networks (DNN) — Bing, Baidu

. . . Intel® FPGA Programmable Intel Enpirion® FLASH USB
® Financial computing Acceleration Card D5005 Power Solutions ;
, BMC USB

= Databases
Intel MAX® 10 Hub
FPGA
DDR4 w/ECC

Networking Interface

[ Attractive features of FPGAs

= High Performance for parallel algorithms — data-flow model e
= Energy efficient e

Low latency “
516)( PCle*

Reconfigurability — Software Defined Accelerator (SDA) v

O FPGA programming made easier than before with powerful tools and hardware capabilities
= Introduction of High-Level Synthesis (HLS) tools
= HBM memory
= Hardware single precession cores
® Cloud FPGA node instances

WARWICK



FPGA DEVICE AND PROGRAMMING CHALLENGE

JFPGA device consists of configurable elements to implement an

algorithm or application in a digital circuit |_,r_|DDR4 |_1._|DDR4 |_1._|DDR4 |_1._|DDR4 intel PAC 5005
= Adaptive Logic Modules(ALMs) — Look Up Tables(LUTs) and Registers LA D Momory comtater
= Random Access Memory Blocks — 640-bit MLABs and 20K bit M20K ' DSPs Ny [ Memory Interfecs |
= Digital Signal Processing Blocks(dsps) T B
[ [ i i *< I <
= Routing Fabrics to connect circuit elements S g%(_l_, HSSI PHY
o = _gJ
= Hardened blocks — Memory Controller, PCle , Clock Modules g . ngggi?uration ;%% ‘
JFPGA accelerator card additionally consists of big DDR4 memories, 5 —
Network interfaces and PCle interface to communicate with Host
| Cache Interface |
Challenge is generating optimal circuit for an application using a high- f o
level language and requiring low level customization Host [ Pcie Genaxte
A
= User has to design memory hierarchy x
= Balance throughput and device resource consumption across many kernels

= Design should consider larger reconfiguration time opposed to GPU kernel calls
= Evolving HLS tools and limited debugging facilities

PCle Bus

WARWICK




CONTRIBUTIONS

O Extending previous work for synthesizing structured-mesh solvers on Xilinx FPGAs
= Kamalakkannan et. al IPDPS2021 - High-Level FPGA Accelerator Design for Structured-Mesh-Based Explicit Numerical Solvers
= Kamalakkannan et. al ICS2022 - High Throughput Multidimensional Tridiagonal System Solvers on FPGAs

Q In this work, we develop workflow to target same class of applications on Intel FPGAs using SYCL

L Codify design using SYCL by Overcoming challenges for gaining near-optimal performance :
= Reducing kernel call overhead by moving iterative loop to FPGA
= On chip memory saving for Thomas solver implementation using decoupled computation of forward loop

1 Use design workflow for implementing two representative applications on Intel D5005 FPGA
= Showcase use of SYCL to implement nontrivial application on FPGAs
= Performance comparison with Nvidia V100 - compare best implementation on both architectures !
= Competitive performance and significant energy saving is achieved compared to GPUs

WARWICK



OUTLINE

FPGAs for HPC — Motivation and challenges /
QContributions v

O Application Class 1 - Stencil Solvers
= Primitive Design
= Challenges and Optimizations when using SYCL
= [ Performance Models ]

O Application Class 2 - Multidimensional Tridiagonal System Solvers
= Thomas Solver
= Challenges and Optimizations when using SYCL - on chip memory saving optimization
= [ Performance models ]

W Performance

= Runtime and Bandwidth
= Energy consumption

L Lessons learnt and Conclusions

WARWICK



APPLICATION CALSS 1 - STRUCTURED MESH BASED EXPLICIT STENCIL SOLVERS

for t in range (niter) {
for x in range (height) {
for y in range (width) {
Ut = kIXUg_1, + k2XUy g + k3XUyyq p+ k4X Uy, pq+ k5XUL,
}

U Finite Difference Methods(FDM) used to solve PDEs numerically,
[ Stencils used to specify required points

O Naturally parallel — all cells could be updated in parallel

WARWICK

Time Step: t

-1

Time Step: t+1




SYCL: WORK GROUP BASED STENCIL IMPLEMENTATION

1 using namespace sycl;

2 void stencil _WI( queue &q, U Pros

3 butfer<float,2> b_data_in, = Familiar GPU implementation style
buffer<float,2> b_data_out,
int sizeO, int sizel, D Cons

4
5
6
7
8
9

int blockO, int blockl){

q.submit ([&] (handler& h){
accessor in(b_data_in, h); = Multiple memory access => multi-port cache
accessor out(b_data_out, h);

= Performance depends on lower global memory bandwidth on FPGAs

= Required cache size unknown at compile time

Tange<2> local_range (block0, blockl); = Kernel to Kernel communication using pipes is not possible

range<2> global_range(sizeO, sizel); [more on this later 1]

14 h.parallel_for<class stencil_WI>

15 (nd_range<2>(local_range, global_range),

16 [=] (nd_item<2> point){

17 int y = point.get_global_id(0);

18 int x = i = id (25

19 1f(x > 0 && y > 0 && x < sizeO-1 && y < sizel™

float r = (inly-1][x] + in[y+1][x])*0.125f +

21 ] [x]*0.5fF;
22 out [yl [x] = r;
23 }

24 1))

25 }

WARWICK



SYCL: SINGLE TASK IMPLEMENTATION OF STENCIL SOLVER

if(y < sizel) s_1_2 = inl[y]l[{];

25 -1
windowl [ptr] = s_1_2;

_ Output

26 Input

1 using namespace sycl; 27 float r = (s_1_0 +s_0_1 + s_2_1+ s_1_2)*0.125f +

2 void stencil_ST(queue &q, 08 S _11%0.51;

3 buffer<float,2> &b_data_in, 29 if(x >0 & y > 0 &&

4 buffer<float,2> &b_data_out, 30 x < size0-1 && y < sizel){

5 int size0, int sizel){ a1 out[y-11[x] = r;

6 q.submit([&] (handler& h){ 59 }

7 accessor in(b_data_in, h); 33 }

8 accessor out(b_data_out, h); sa B3

9 h.single_task<class stencil_ST> ([=] (A 35 }
10 float windowl [MAX_DIM];
11 float window2[MAX_DIM];
12 float s_1_0, s_0_1, s_1_1, s_2_1, s_1_2;
13 /* +1 due to one row delay through window buffer */
14 int total_itr = (sizel+1)*size0; '
15 for(int i = 0; 1 < total_itr; i++){ I
16 int x = itr 7 sizeO; |
17 int y = itr / sizeO; | Cyc\\Buffer
18 int ptr = itr % (size0-1); | 47
19 | Reg [@—| Reg |[€— Rez (¢
20 s_1_0 = window2[ptr]; ‘ y _J
o s 0 1 . | A B +\* ~N : ——p|  CyclicBuffer
22 girdow2 [ptr] = s_1_1; | stencil
23 s_1.1 =s8_2_1; I Computation
24 s_2_1 = windowl [ptr]; |

|
|

WARWICK



SYCL: VECTORIZATION

1 /* Data type for wider data path */
2 struct dPathV {[[intel::fpga_register]]float data[VFACTOR];};

Cyclic
Buffer <

T 1l
el

Cu2

A A 4 4 A

6 struct dPathV s/ _0, s_0_1, s_1_1, s_2_1, s_1_2, vec_wr; T
7 Tosdnt i =07 i < total_itr; i++){ T =
8 /* other declarations, index calculation, window buffer*/

9 float mid_1[VFACTOR+2] = {s_O_1.data[VFACTOR-1], \

10 s_1_1.datal0], .. , s_1_1.datal[VFACTOR-1] , s_2_1.datal[0]};
11 #pragma unroll VFACTOR

12 for(int v = 0; v < VFACTOR; v++){

13 int i_ind = i *VFACTOR + v;

14 float val = (s_1_0.datal[v]+s_1_2.datalv] + mid_1[v] + \

15 mid_1[v+2])*0.125f+ s_1_1.datal[v]*0.5f;

16 bool cond = (i_ind>0 && i_ind<sizeO-1 && j>1 && j<size1);

17 vec_wr.datal[v]= cond ? val : s_1_1.datal[v];

18}

19 /* writing results to pipe */

)
20 } Time Step ¢ N Tl
|

et

A A A A
JJI
=

0

<

Q

=

—_

[ Vectorization Factor: Number of mesh points updated at same clock
= Called the "Cell parallel" method in Waidyasooriya et al. 2017
1 Demands bandwidth proportional to vectorization factor

Time Step t+1 -

1 On-chip memory requirement ideally same as primitive design

WARWICK



SYCL: ITERATIVE LOOP UNROLLING

1 template <int N> struct itr_loop {
2 static void instantiate(queue &q, int nx, int ny){

3 itr_loop<N-1>::instantiate(q, nx, ny);

4 stencil_compute<N-1, 4096, 8>(q, nx, ny);
5

61

7 template<> struct itr_loop<i>{

s static void instantiate(queue &q, int nx, int ny){
9 stencil_compute<0, 4096, 8>(q, nx, ny);

10 ¥

11 };

Cyclic Buffer J

4 h 4 yY vy

Stencil
Computation

O Multiple Iterations in Parallel

= Called as “Step parallel” method in Waidyasooriya et al. 2017

1 Does not cost external memory Bandwidth
O On-chip memory o unroll factor

*Previous works utilized this technique - Waidyasooriya2017, soda2018

WARWICK

I
=y l c——
: Reg JI | : Reg J' Cyclic Buffer
I | | I
| et
Reg [« Reg |« Reg ~: I I Reg Reg |« Reg ﬁl
_____ e I—J_ _ et ]
1 ' | =: [
| : I ! :
I| Reg — Cyclic Buffer I — Il Reg — Cyclic Buffer
| S— Stencil [ S—
I Computation
I
input | 4k
Compute module for Iteration - k I Compute module for Iteration— k+1
B Output
— — Output Input = =1 "
A
Input
AXI
Read Kernel >
ﬂ FIFO
Compute
Kernel:1 External
Memory
FIFO (DDR4/HBM)
Compute
Kernel:2
ﬂ FIFO
AXI
Write Kernel >




SYCL: BATCHING

Mesh:1 Mesh:2
O Pipeline latency becomes significant
for smaller grids
kernel:1 Idle kernel:1 Idle kernel:1 Idle kernel:1 Idle
A
i Mesh:1, ltri1 i Mesh:1, Itr2 i Mesh:2, Itr1 i Mesh:2, Itr:2 i Output Point
| ] I j | j I | }'
: : : ? : ? : : : ~ Delay
! Read Kernel | I Read Kernel | | Read Kernel | I Read Kernel | Input Point }De|ay >
| Compute Kernel:1 | { Compute Kernel:1 } | Compute Kernel:1 | { Compute Kernel:1 } it
[ Compute Kernel:2 | | [ ComputeKernel:2 | | [ Compute Kernel:2 | | [ Compute Kernel:2 ]
5 ; ; ; Compute Kernel:1 Compute Kernel:2
| Compute Kernel:3 | | Compute Kernel:3 | | Compute Kernel:3 | | Compute Kernel:3 |
[ Write Kernel | [ Write Kernel | [ Write Kernel | [ Write Kernel |
Time O Batching on last dimension
kernel:1 Idle kernel:1 Idle
e i (J Reduce latency per mesh
: Mesh:(1,2), Itr:1 | : Mesh:(1,2), Itr:2 : ; . p .
: — ] (1 No SYCL specific constructs required
| Read Kernel | | Read Kernel | : for batched processi ng
: : ; ; : Batched
| Compute Kernel:1 | | Compute Kernel:1 | ; Mesh
[ Compute Kernel:2 | Compute Kernel:2 |
[ Compute Kernel:3 | [ Compute Kernel:3 |
| Write Kernel | | Write Kernel |




SYCL: MOVING ITERATIVE LooP TO FPGA

. Jobs submitted to Jobs submitted to
O Why do we need to move Iterative loop to FPGA? queue for iter: ¢ quese for iter: t+1
= Kernel job submission overhead is significant for smaller meshes
= Explicit memory access synchronization using g.wait () on host Read Kernel Read Kernel
Buffer:A Buffer:B
. : wait
O Moving Iterative loop to each FPGA kernel Compute | | ¢ g-wal) >[[ Compue
= Read and write kernel requires both buffers A,B
. . . Write Kernel Write Kernel
= Requires a memory synchronization flag BufferB Buffer-A

= Deadlock due to dependency-based runtime scheduling

A G

Application Execution

Jobs submitted to Time Step: t Time Step: t+2

queue for all iterations

Buffer:A iy I A
Read Kernel I e :
Buffer:A,B

1

1

Compute :
Kernel :
1

Time Step: t+1 Time Step: t+1

Write Kernel :

Buffer:B,A : T
Buffer:B \/ I
Runtime Identify Read after Write : o

dependency for Buffers A,B .

WARWICK



SYCL: MOVING ITERATIVE LooP TO FPGA

(J Deadlock due to runtime scheduling | Tlintel: :disable_loop_pipelining]]
. 2 for(int itr = 0; itr < n_iter; itr++) {
= Fuse read kernel and write kernel 5 accessor ptrR = ((itr & 1) == 0) 7 in : out;
4 accessor ptrW = ((itr & 1) == 1) 7 in : out;
. ' . . 5 [[intel::ivdep]] [[intel::initiation_interval(1)]]
(1 Delay pipe read (idx2) by number of iterations 6 for(int i = 0; i < total_itr+delay; i++) {
= Pipe operations are blockin 7 struct dPath16 vecR = ptrR[i+delay];
P P g 8 if(i < total_itr) pipeM::PipeAt<idxl>: :write(vicR);
= Avoids deadlock or throughput reduction due to waiting 0 CIUCT QPatnIe veew;
10 if (i >= delay) vecW = pipeM: :PipeAt<idx2>: :rea]l();
11 ptrWlil = vecW;
[ Value for delay depend on 12 , ¥
13
= Hardware schedule of pipe read and writes
= Latency due to register stages and delay buffering
Source Loca... 0 44 88 132 176 220 264 308 352 396 440 484 528 572 616 660 704 748 792 836

-

- stencil_read_write_id... - ; i

+ Cluster 80 - _q
+ Cluster 81 -

LD ADI2D FP32.cpp:86
+ Cluster 82 - ':—‘ :I
WR Jopt/intel/oneapi/co... a
| rD Jopt/intel/oneapi/co... ]["—
+ Cluster 83 - H 1
ST ADI2D FP32.cpp:94 L'A

WARWICK



DELAY MODEL

Read-Write Kernel Compute kernel pipeline delay > CIkWV_ CZk’”d + S + db
Data will be available when FIFO pop is attempted
[FIFO(idxl)PUSH » Pipeline Stages |__

clky,r | S
delay < clk,,— clk,;+ S + dj, and delay > clk,,— clk,; + d,
data will be available after few clocks from first attempt
of FIFO pop, Leading to reduced throughput

FIFO(idx2) POP < Delay Buffer

clk.4 :dp
delay < clk,,,—clk.4 + dy,
Data never going to be available to pop from the FIFO

WARWICK



MODEL:; PERFORMANCE

Two main components of the latency ® Delay buffer Latency
) ] ) @® | ooping Latency
= Computation latency in looping through mesh

= Cascaded compute module delay buffer latency 00000000
i T o o0o0/000oo0
Latency due to hardware pipeline s e elo oo ooee
oo eleoe 000
o o output;FIFO

(J2D Mesh runtime model e e oo
= delay,q = (Sza + dp2a)

" Soq = Z#z%ernels(clkwr,i — Clkrd,i) Compute Kernel -i ' Compute Kernel - i+1

Input FIFO

" doza = [ xpx3

sy = 1 s ([E]xrx B+ detays)

Vv Vectorization Factor

QSimilar model for 3D application is on the paper p Iterative loop unroll factor
QOver 85% accuracy D Stencil Order
m, n, | X, Y, Z dimensions of mesh
B Batch Size

Total number of iterations

Niter




APPLICATION CLASS 2 — MULTIDIMENSIONAL TRIDIAGONAL SOLVERS

1 Common in applications solving partial differential equations
using implicit schemes

= Computational fluid applications

a;ui—1 + b;u; + ciui1 =d;, 1=0,1,...., N —1

= Financial computing — option pricing bo co O s 0 Uuo do
al bl 1 ce 0 Uq dl
L Popular Tridiagonal System Solvers 0 ax by e 0 uz || do
®* Thomas algorithm X : :
= PCR i 0 0 anN—1 bN—l_ | UN-—1_ _dN—l_
= SPIKE
25 L 26 [ 27

/72 77 77

19 7 20 7 21 /s

O Popular Alternating Direction Implicit(ADI) time method
= Solves multiple systems along the coordinates

9 | 20 | 2 P s

12

. 10 | 11 12 9
. 6
= Work in Kamalakkannan et al. IC52022 shows how the TS LG
. . . . . 1 is A A7
Thomas algorithm is the more efficient for multiple solves =T o kLA | 2 L] / / %
1 .—
g 19 A A
10 | 11 | 12 126 9 /lf
1 2 3 3 ,\/4’
Q‘&

WARWICK

Dim-X

(a) Batched mesh

(b) X-solve

(¢) Y-solve

(d) Z-solve




IMPLICIT SOLVERS: THOMAS SOLVER

(1 Dependency Algorithm 1: thomas(a, b, c, d) A(i+2) B(i+2) C(i+2)
= Between iterations in forward loop and backward loop 1: dy do/bo A(i+1) b B(i+1) C(i+1)
= Between two loops 2: ¢f + co/bo A() ci-) ||| Ba) c(i)
O Can’t achieve initiation interval =1 3: fori=1,2,.., N —1do
*
= Floating point arithmetic operations are multi clock cycle 4 1 1/(bi — aici_y) N
. * . . *
= |f iteration latency for FW loop /sand BW loop /, 5. di < r(di — aidi_;) ’
. * .
= Arithmetic pipeline is not effectively used 6: ¢ TG
= Total number of clock cycles is: Nx(I¢ + 1) v §nd-forN 0 10d > Div < [1.0f]
8: Ior 1 = — 2, ... (0]
 FW loop and BW loop executes one after another L. o
9: d; < dz — C; di_|_1
10: end for Mul €
] ] 11: return d
On Chip On Chip Inter lteration
Memory Memory dependency
C(i)
C(i-1)
C(i-2)
[ FW loop ] [ BW loop ] [ FW loop ] [ BW loop ] r<+ 1/(b; — aic:—l)
C; < Tre;
> >
FW Unit active BW Unit active

WARWICK



THOMAS SOLVER: BATCHING AND DATAFLOW OPTIMIZATIONS

L Group of Systems can be solved interleaved manner
= Fully utilizing arithmetic pipeline
= group size should be equal or higher than iteration latency I/l
= Assume group size g = max (I¢, 1)

L Improves the average clocks to N for each loop

[ Latency to solve single system will remain same

1 Double buffering to execute FW loop and BW loop in parallel
= Dual port memory
= Separate partition for memory read and write

Ping Pong
Buffer

Y

Ping Pong
Buffer

Y

Batch
:n+1

—)[ FW loop ] [ BW loop ]—) B?t;:h

WARWICK



THOMAS SOLVER: ON-CHIP MEMORY REQUIREMENT

L On-chip memory is the key and limiting resource when solving reasonably larger system on FPGA
= Each data structure requires 2gN words
= g number of interleaved systems with size N
= Twice memory requirement due to ping pong buffer l

Inter - leaving
systems

l

memory cost =7 RAMs X 2gN words/RAM FW Solve

l

BW Solve

l

Storage - a, b, c,d

Storage - c*,d*

Storage - u

WARWICK



THOMAS SOLVER: ON-CHIP MEMORY OPTIMIZATION

[ Coefficient (a, b, ¢) can be calculated for some implicit applications
= Coefficient generation can be fused to Thomas forward solve
= Saves storage required for (a,b,c) in Thomas interleave
= 49% reduction of on chip memory requirement

1 Reducing required group size will help to save on-chip memory.
= Decoupling high latency floating-point based computation r to separate kernel
= Having only DSP supported FP ADD/SUB/MUL in other three kernels reduce group size
= Save 40% on chip memory compared to fused version.

Algorithm 1: thomas(a, b, ¢, d)
1: dS < do/bo
2: CS < Co/bo
3: fori=1,2,....,. N —1do
4: T < 1/(()@ — az-c;‘_l)
5
6
7

*k *k
c; & re;
- end for

Storage - r

l

Inter - leaving
systems

l

r_generator

FW Solve

l

BW Solve

l

Storage - d

Storage - c*,d*

Storage - u

WARWICK



PERFORMANCE — INTEL PAC D5005 vs. Nvibia V100

1 Two representative applications FPGA Intel PAC D5005
= RTM_forward — 3D, 25-point stencils, vector elements DSP blocks 5760
= 2D ADI FP32 - 2D Heat Diffusion Equation using MLABs / M20K  7.6MB / 29.3 MB
| ing di ion implici hod DDR4 64GB, 76.8GB/s, in 4 banks (1 channel/bank)
alternating direction implicit metho Host Intel Xeon Platinum 8256 @3.8GHz
(16 CPUs, 4 cores each)
3 FPGA kernels implemented using SYCL (DPC++) _ 1559 GB RAM, Ubuntu 18.04.6 LTS
Design SW Intel oneAPI 2021.4.0, Intel Quartus software 19.2
board_variant pac_s10
L GPU implementation using CUDA GPU Nvidia Tesla V100 PCle
= RTM forward using OPS framework Global Mem. 16GB HBM2, 900GB/s
= 2D ADI FP32 using Trid solver library Host Intel Xeon Gold 6252 @2.10GHz (48 cores)
_ ] 256GB RAM, Ubuntu 18.04.3 LTS
https://github.com/OP-DSL/tridsolver Compilers, OS  nvee CUDA 10.0.130, Debian 9.11

= Equivalent or better performance than NVIDIA cuSPARSE

O Comparison — Intel PAC D5005 Vs Nvidia V100 - |psoos |vieo |

= Time to solution

TeraFLOPS (FP32) 9.2 14
= Bandwidth
Memory Bandwidth (GB/s) 76.8 900
= Power
PCle Bandwidth (GB/s) 32 32

 Fair comparison — GPU is saturated by batching

WARWICK


http://https:0/github.com/OP-DSL/tridsolver

RTM_FORWARD RESULTS — INTEL D5005 Vs Nvibia V100

10° |:| GPU-100B —A— FPGA-100B
- GPU-10B —A— FPGA-10B
==+ FPGA-Pred
1: fori=0, i < njter, i ++ do
2 K:fpml(YZSPt,,D,,U)th;T:Y+K/2; S:K/6 2 1001
3 K= fomi(Tospe, o p)) Xdt; T=Y+K/2; S=S+K[/3 § z
4 K= fomi(Tospt, ps ) Xdt; T=Y+K; S=S+K/3 ’ >
5. K= fymi(Tospr, pop) X dt; Y =Y + S+ K/6 5
3 1071
6: end for . [
O

10x10x10 16Xx16Xx16 22x22x22 28x28x28 34x34x34 40x40x40
Mesh Size

Mesh=40%3, B=100, iter=200, Energy(J) Mesh=40%3, B=100, iter=200, Effe-Bandwidth(GB/s)
V100 344.7 V100 =)

psoos | osoos |

0 100 200 300 400 0 100 200 300 400 500

WARWICK



2D ADI FP32 — INTEL D5005 Vs Nvipia V100

Mesh=64%2, B=4000, iter=16000

Mesh=64%2, B=4000, iter=16000, Energy(kJ) Effe-Bandwidth(GB/s)

1: for 1 = 0,17 < Njter, 2 + + do

2: Calculate RHS : V100 2 58 V100-Ydim 555
d= f?pt(u)’a — _71771) =7 C= _71'7

3:  Tridslv(x-dim), update d

4:  Tridslv(y-dim), update d D5005 - D5005 S

5

6:

V100-Xdim 205

u=u-+d

0 2 4 6 8 200 400 600
end for 0
X
16 columns
y Read 64 bytes 102 -l GPU-800B -’- GPU_opt_est-800B
Steps [ fioas fromts  flosts floscs 0 GPU-40008 ) GPU_opt_est-4000B
EEENEENEENEEREEN SECDIRY {01101 [0] 10X 1% S 1N 1 024 124 121 b2 21 B Bl S 3 + FPGA-800B - == FPGA-Pred
g 1 SECpNZ] |[0]10] (0] (o) 1% E1 w1 10 k24 121 521 124 131 131 13118 I
& IENEuASREERaE stes 3| [ofoll0o/1/1/11/222/2/3033(3] * ~A- FPGA-4000B O
¥ Eiasdmsaanaaeas [0lofolof1]1l1]1]2]2[2[2]3]3]3]3 N O
o L Step 1 (4444555566667777 —
EEEREREREAnRREN step'2l |[44[allas 55566667777 - 3
EENENEENERNEREEE 'step 3| |4/44 4l[55/5/56ll666777|7 QO; C
SNEEENNEEEEEEEER nnEEEE m 8
[}
lillllllllllllll L
= 1|
5 10
£
| float a[l6] | E
Thread 0: float reg[l6] = [0 0 00O 0O00000O0O0OO0OO0OO0O [0} é
Source, Thread 1: float reg(16] =[1/1//a/1 12 [2/ala/a/1laa/ala 2|
. Thread 2: float reg([16] =[|22/22 2222 22222/222 H
Slo-e oo el 30313]30313(303)3]303]3]313]3]:
TOMSZO].G Thread 4: float req(16] = (4 4 4 4 4 44 444444444 O
Thread 5: float reg[l6] = 52 |51515 5135151 B3 35151515 :)
Thread 6: float reg(16] = |6 6 6 6 6 6 6 6 6 6 666666 &
Thread 7: float reg[l6] = [ 100 1

32x32 40x40 48x48 56x56 64x64
Fig. 9. Local transpose with registers. Mesh Size




LESSONS LEARNT

[ SYCL offer Functional portability, but significant customization is required to gain decent performance on FPGAs
= Kernel to Kernel communication to overcome global memory bandwidth
= Custom memory hierarchy design for better data reuse

[ Significant effort required for applying non-trivial transformation to get optimized SYCL implementation
= Programming overheads still dominating on FPGAs

1 FPGAs could challenge GPUs for (small) subset of HPC applications
= Competitive or better performance on FPGA compared to current best traditional architecture (GPUs)
= Significant energy saving on FPGA

WARWICK



CONCLUSION AND NEXT STEPS

(1 Used SYCL to design and develop structured mesh solvers on Intel FPGAs
= Structured mesh based explicit stencil solvers — workflow for any stencil solver
= Multiple multidimensional tridiagonal system solvers - best implementation based on Thomas algorithm

[ Key Challenges for near optimal performance
= Reducing kernel call overhead my moving iterative loop to FPGA
= Reducing on chip memory usage by decoupling computation in Thomas forward loop

L Performance of solutions synthesized on an Intel D5005 FPGA
= designs for non-trivial, production representative applications
= Competitive performance compared to optimal implementation of same applications on Nvidia-V100
= 59%-76% energy saving on FPGA for largest configuration of each application case

1 Next steps
= Automating code generation of structured mesh applications to target FPGAs using SYCL
= Exploring the performance on Intel FPGAs with HBM

Stencil Solvers . https://github.com/Kamalavasan/StencilsOnFPGA
Tridiagonal Solvers : https://github.com/Kamalavasan/Tridsolver-FPGA

WARWICK


https://github.com/Kamalavasan/StencilsOnFPGA
https://github.com/Kamalavasan/Tridsolver-FPGA

REFERENCES AND ACKNOWLEDGEMENTS

Acknowledgements

0 Gihan Mudalige was supported by the Royal Society Industry Fellowship Scheme (INF/R1/1800 12)

O Istvan Reguly was supported by National Research, Development and Innovation Fund of Hungary(PD 124905)
O We are grateful to Intel for providing access to devcloud

O We are grateful to Jacques Du Toit and Tim Schmielau at NAG UK for the RTM application

References

= Waidyasooriya2017: H. M. Waidyasooriya, Y. Takei, S. Tatsumi and M. Hariyama, "OpenCL-Based FPGA-Platform for Stencil Computation and Its Optimization
Methodology," in IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 5, pp. 1390-1402, 1 May 2017, doi: 10.1109/TPDS.2016.2614981.

= S0da2018: Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. 2018. SODA: stencil with optimized dataflow architecture. In Proceedings of the International
Conference on Computer-Aided Design (ICCAD '18). Association for Computing Machinery, New York, NY, USA, Article 116, 1-8.
DOl:https://doi.org/10.1145/3240765.3240850

= 3dRTM2011: Haohuan Fu and Robert G. Clapp. 2011. Eliminating the memory bottleneck: an FPGA-based solution for 3d reverse time migration. In Proceedings of
the 19th ACM/SIGDA international symposium on Field programmable gate arrays (FPGA '11). Association for Computing Machinery, New York, NY, USA, 65-74.
DOI:https://doi.org/10.1145/1950413.1950429

= |[PDPS2021: Kamalakkannan, K., Mudalige, G.R., Reguly, .Z. and Fahmy, S.A., 2021, May. High-level FPGA accelerator design for structured-mesh-based explicit
numerical solvers. In 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS) (pp. 1087-1096). IEEE.

= |CS2022: Kamalakkannan, K., Reguly, I. Z., Fahmy, S. A., and Mudalige, G. R. (2022). High Throughput Multidimensional Tridiagonal Systems Solvers on FPGAs. In
Proceedings of the ACM International Conference on Supercomputing (ICS ‘22). Association for Computing Machinery, New York, NY, USA (Accepted)

= TOMS2016: Endre Laszld, Mike Giles, and Jeremy Appleyard. 2016. Manycore Algorithms for Batch Scalar and Block Tridiagonal Solvers. ACM Trans. Math. Softw. 42,
4, Article 31 (July 2016), 36 pages. https://doi.org/10.1145/2830568

WARWICK



