IWOCL 2024

The 12th International Workshop on OpenCL and SYCL

Unlocking Performance Portability on LUMI-G Supercomputer: A Virtual Screening Case Study

Gianmarco Accordi, Davide Gadioli, Gianluca Palermo Luigi Crisci, Lorenzo Carpentieri, Biagio Cosenza Andrea R. Beccari

DRMATIONE E BIOINGEGNERIA

APRIL 8-11, 2024 | CHICAGO, USA | IWOCL.ORG

Overview

1. Drug Discovery and Virtual Screening

- 2. HPC for Urgent Computing
- 3. LiGen Batched GPU Acceleration
- 4. SYCL Porting
- 5. LUMI Benchmark Access
- 6. Results and Conclusions

Drug Discovery

- Identify chemicals that yield potential therapeutic effects
- It is a very long and costly process
 - \circ $\,$ Due to failure while finding drug candidates $\,$

Drug Discovery

POLITECNICO MILANO 1863

- Identify chemicals that yield potential therapeutic effects
- It is a very long and costly process
 - Due to failure while finding drug candidates

4

Virtual Screening

- It's an early stage of the drug discovery process
- It screens a large database of known compounds
 Looking for the most promising drug candidates
- In-silico filter of compounds
 - Generate feasible compounds poses
 - Evaluate each pose-protein interaction strength

Molecular Docking

- Structural-based virtual screening
- Given two molecules, it searches for feasible ligands poses
 - It binds ligands onto a target protein

Scoring Functions

- Predicts the interaction strength of each pose-protein pair
 - The output **SCORE** is a numerical value
 - \circ It is used for ranking

Consider different chemical interactions

- Hydrogen bonding
- \circ Solvent
- Buried surface
- \circ Van der Waals forces

Overview

- 1. Drug Discovery and Virtual Screening
- 2. HPC for Urgent Computing
- 3. LiGen Batched GPU Acceleration
- 4. SYCL Porting
- 5. LUMI Benchmark Access
- 6. Results and Conclusions

Virtual Screening and HPC

- Virtual screening is complex
 - Virtual compound libraries are very large
- Each ligand-protein evaluation is independent
 - Embarrassing parallel problem
- Supercomputers are leveraged to perform virtual screening campaign

- Virtual screening application owned by Dompé
- It is a component of the EXSCALATE drug discovery platform
- Design to hinge the modern supercomputer nodes
- Used to perform extreme-scale virtual screening campaign

References:

D. Gadioli et al., "EXSCALATE: An Extreme-Scale Virtual Screening Platform for Drug Discovery Targeting Polypharmacology to Fight SARS-CoV-2", TETC, 2022

Urgent Computing

- Virtual screening campaign to fight back against pandemics
 - ANTARÉ 4ZIKA CPU only version
 - EXSCALATE GPU support (CUDA)
- The SLIGATE European is developing a CADD workflow
 - Support for several EuroHPC supercomputers
 - LUMI deployment showed a new challenge

References:

G. Palermo et al., "Tunable and Portable Extreme-Scale Drug Discovery Platform at Exascale: the LIGATE Approach", CF, 2023

Overview

- 1. Drug Discovery and Virtual Screening
- 2. HPC for Urgent Computing

3. LiGen Batched GPU Acceleration

- 4. SYCL Porting
- 5. LUMI Benchmark Access
- 6. Results and Conclusions

LiGen GPU Approach

- LiGen deploys a highly optimized CUDA version
 - GPU computational approach shifted from a latency to a throughput one
 - Thanks to a collaboration with NVIDIA's engineers

References:

E. Vitali et al., "GPU-optimized approaches to molecular docking-based virtual screening in drug discovery: A comparative analysis", JPDC, 2024

LiGen Batched Approach - 1

- LiGen code makes extensive use of template meta-programming
 - Influence kernel's registers pressure
 - Batch's ligands properties are used to select a kernel implementation
- Batches can be tuned
 - Total number of batches used
 - Each batch dimension
 - Influenced by the hardware characteristics
 - Auto-tuning using CUDA runtime API

References:

G. Accordi et al., "Out of kernel tuning and optimizations for portable large-scale docking experiments on GPUs", JoS, 2024

LiGen Latency Approach

• LiGen latency version process ligand in-order

References:

G. Accordi et al., "Out of kernel tuning and optimizations for portable large-scale docking experiments on GPUs"

LiGen Batched Approach - 2

- LiGen throughput version process ligand out-of-order
 - $\circ~$ It packs ligands with the same expected execution time in batches

References:

G. Accordi et al., "Out of kernel tuning and optimizations for portable large-scale docking experiments on GPUs", JoS, 2024

API Query & Formulas

- CUDA *b* obtained with
 - o cudaOccupancyMaxActiveBlocksPerMultiprocessor

Overview

- 1. Drug Discovery and Virtual Screening
- 2. HPC for Urgent Computing
- 3. LiGen Batched GPU Acceleration

4. SYCL Porting

- 5. LUMI Benchmark Access
- 6. Results and Conclusions

LiGen SYCL porting

- SYCL porting has initially been focused on NVIDIA GPUs
 - We focused on maintaining LiGen functionality end-to-end
- Then, the LiGen SYCL version was extended to run on multi-GPU and multi-node architectures
 - $\circ~$ The batched approach has been ported into SYCL

References:

L. Crisci et al., "Enabling Performance Portability on the LiGen Drug Discovery Pipeline", FGCS, 2024

API Query & Formulas

- CUDA *b* obtained with
 - o cudaOccupancyMaxActiveBlocksPerMultiprocessor
- SYCL wgs obtained with
 - o kernel_device_specific::work_group_size
 - Part of the kernel_bundle API

LiGen Number of Batches

⁽a) CUDA implementation

ter						
clust 9	1.28707	1.51416	1.65884	1.82244	1.93901	
4 toms	1.24815	1.47157	1.6077	1.76181	1.86973	
2 of a	1.14244	1.35158	1.48027	1.62752	1.71154	
nbei	1	1.13143	1.19798	1.2902	1.32217	
NN	1	4	6	9	23	
Number of rotamers cluster						

(b) SYCL implementation

LiGen Batch Dimension

• Batching showed a similar performance improvement

References:

G. Accordi et al., "Out of kernel tuning and optimizations for portable large-scale docking experiments on GPUs"

Batching Registers Pressure

- Ligands' sizes used as typed template parameter
- Template parameters impact loop unrolling
 - Increased register pressure
- Fix register number does not help
 - Slower kernel

Num Atoms	CUDA Registers	SYCL(oneAPI) Registers
32	102	158
64	103	176
96	98	176
128	102	178
160	112	176
192	124	182

Overview

1. Drug Discovery and Virtual Screening

- 2. HPC for Urgent Computing
- 3. LiGen Batched GPU Acceleration
- 4. SYCL Porting
- 5. LUMI Benchmark Access
- 6. Results and Conclusions

Benchmark Access

- SYCL support has been extended to AMD GPUs
 - Thanks to a Benchmark Access on the LUMI-G partition
- SYCL Porting tested and tuned for AMD architecture
- On AMD GPUs, no LiGen reference is available
 - HIP porting using HIPIFY
 - The HIP version has been tested but not tuned

AMDA ROCM

LUMI

- Located at CSC Data Center in Finland, co-founded by EuroHPC
- It has a speed of 550 petaFLOPS
 - $\circ~$ 5th supercomputer in the world, according to November 2023 Top500
 - 1st supercomputer in Europe, according to the same ranking
- Based on HPE Cray EX architecture

POLITECNICO MILANO 1863

LUMI

- No official SYCL support when we started collecting data
 - \circ $\,$ We have been in contact with the CSC support team
 - We preferred to compile everything from scratch
 - Some technical problems to get a working SYCL toolchain

Overview

- 1. Drug Discovery and Virtual Screening
- 2. HPC for Urgent Computing
- 3. LiGen Batched GPU Acceleration
- 4. SYCL Porting
- 5. LUMI Benchmark Access
- 6. Results and Conclusions

Experimental Setup

• Software-stack

- GCC 11.3 and LLVM 15.0.6
- AdaptiveCpp 0.9.4
- o oneAPI DPC++ 2022-12
- NVCC 11.7
- HIP 5.3

• Hardware

- AMD MI250X on LUMI-G nodes
- AMD MI100 on E4 cluster
- NVIDIA A100 on Karolina nodes

LiGen LUMI GPUs Performance

LiGen Scaling on LUMI

NOTE: due to a technical problem with the FS, we used only 1 GPU per node

Conclusions

- We are now able to support several EuroHPC supercomputers
 - Performance portability unlocked
- There is still room for improvement
 - On NVIDIA, we cannot go fully SYCL
 - High register pressure
 - Support now for AMD systems
 - SYCL compiler performs differently
 - HIP requires some tuning

Urgent computing scenarios can perform future virtual screening campaigns on more supercomputing architectures

Thank you for your attention!

- Acknowledgment
 - EuroHPC JU for awarding this project access to
 - LUMI under project EHPC-BEN-2022B12-001
 - Karolina with grant EHPC-DEV-2021D02-049
 - European Union's Horizon 2020 research and innovation program
 - Under grant agreement No 95613 (LIGATE)

Contact reference: Gianmarco Accordi

gianmarco.accordi@polimi.it

