
1© 2022 CoreAVI - Confidential

Presented by:

Ken Wenger Verena Beckham

www.coreavi.com www.codeplay.com

Date: 5/05/2022

Exploring SYCL SC

IWOCL 2022

http://www.coreavi.com/
http://www.codeplay.com/


Welcome to IWOCL 2022

Ken Wenger, Senior Director Research & Innovation, CoreAVI

● CoreAVI: Providing safety critical GPU acceleration platforms using open 
standards

● Long history with Khronos
○ Main contributor to OpenGL® SC 2.0
○ Involved in OpenCL™ early on
○ Main contributor to Vulkan® SC
○ Chaired Vulkan SC working group

● Background in safety critical GPU driver development (graphics and 
compute)

● Contributing member of OpenGL SC 2.0 and Vulkan SC Working Group

● In my role now:
○ Research the role of functional safety, and determinism in Machine 

Learning and general computing platforms
○ Design and lead implementation of CoreAVI’s Safe AI platform



Welcome to IWOCL 2022

Verena Beckham, VP of Safety Engineering, Codeplay

● Codeplay: Enabling heterogeneous computing using open standards

● Long history with Khronos

○ Involved in OpenCL early on

○ Main contributor to SYCL 1.2, developed first conformant implementation

○ Chaired SYCL WG since the beginning

• We started supporting heterogeneous compute for computer games
• Then mobile phones
• Now high-performance compute
• We want to unlock heterogeneous computing for safety-critical industries as well



Agenda

• Background on the Industry

• Use Cases for Compute/ML

• Non-SC tools and API availability

• SC tools and API availability

• Why SYCL SC

• SYCL SC in the Ecosystem

• SYCL SC Considerations

• The SYCL SC Exploratory Forum



Automotive Software

• There is a surprising amount of software in a car!

• Controlling the engine

• Controlling the breaking

• Controlling the lighting

• …

• Now, software is starting to determine the value of the car

• Automatic wind screen wipers, automatic lights

• “Advanced Driver Assistance” (ADAS) features

• adaptive cruise control

• automatic emergency breaking

• self-parking

• …

• Holy grail: Autonomous vehicles (AV)

• This means: AI

The “Software 
Defined Vehicle”



Automotive Software is Changing

Traditional Modern

Simple C/C++ algorithms / assembly / 

automatically generated from a model

Complex, large code bases, high-level 

frameworks

SW mostly rewritten for every new HW Portability becomes important

Many small ECUs A few central, large processing units

Simple “embedded” HW (homogeneous, 

single core)

Heterogeneous, multi-core, shared

Different source code / company / framework 

per ECU

Shared programming platforms



Automotive Software

• Software is safety-critical

• Software needs to be sufficiently free of bugs

• If a bug is encountered it still needs to be safe

• Software needs to cover all use cases

• Standards to ensure this, e.g.

• ISO 26262 – Functional Safety

• ISO 21448 – Safety of the Intended Functionality

• ISO 26262 includes guidelines:

• How to write & track your requirements

• How to design your software

• How to (not) write your code

• How to test your code

• MISRA® guidelines cover a subset of ISO 26262 coding guidelines

• Guidelines for C - 1998

• Guidelines for C++ - 2008

• New guidelines for C++ (in development) – 202x



Other Industries

• Avionics

• More conservative than automotive

• Space flight sometimes mission-critical instead

• Nuclear

• Rail

• Medical



Use Cases

• Sensor Fusion

• Camera

• Image Processing

• Computer Vision

• Deep Learning

• Radar

• Signal Processing

• Deep Learning

• Combine input sources

• Compute decision

• Tools

• TensorFlow

• OpenCV

• Pytorch

• Python Sci-Kit

• Vendor-specific APIs and 
frameworks

• SYCL

• OpenCL

• Vulkan



Tools vs Use Case Distribution (Non-SC)

• Sensor Fusion

• Camera

• Image Processing

• Computer Vision

• Deep Learning

• Radar

• Signal Processing

• Deep Learning

• Combine input sources

• Compute decision

• Acceleration

• Back-end execution of high-
level APIs

• Tools

• TensorFlow

• OpenCV

• Pytorch

• Python Sci-Kit

• Vendor-specific APIs and 
frameworks

• SYCL

• OpenCL

• Vulkan



Tools vs Use Case Distribution (SC)

• Sensor Fusion

• Camera

• Image Processing

• Computer Vision

• Deep Learning

• Radar

• Signal Processing

• Deep Learning

• Combine input sources

• Compute decision

• Acceleration

• Back-end execution of high-
level APIs

• APIs

• OpenVX 1.3

• Vulkan SC

• Missing

• Tools/Libraries

• High-Level parallel 
programming API (SYCL SC)



Why SYCL SC

• Most embedded developers are familiar with C++

• Non-sc parallel compute dominated by C++

• Barrier to entry for C++ much lower than OpenCL or Vulkan SC

• Khronos already defines SYCL

• A parallel programming API for C++

• Khronos has a long track record of producing SC APIs from existing ones (OpenGL SC, Vulkan SC, 
OpenVX).

• SYCL SC is the next logical step

• SC ecosystem based on open standards must have APIs for each level of abstraction

• A single API cannot address every problem



SYCL SC in the Khronos SC Ecosystem

SC

Neural network models are trained in the cloud using a 

variety of platforms.

OpenVX provides high level APIs for Vision and AI with a safety 

critical profile, enabling applications to quickly deploy trained NN 

models.

Vulkan SC is a lower, execution-level API that could be used to 

accelerate higher-level APIs like SYCL SC & OpenVX

Safety Critical Vision or AI Application

Data 

Processing

Decisions

SC PROFILE

Once the model is trained it is exported and 

converted to NNEF before being passed to a 

safety critical API for inferencing.

SYCL SC provides a general parallel programming API for 

accelerated compute at the C++ level. A typical AI application 

pipeline will combine the discreet functionality exposed by OpenVX

with proprietary algorithms written using SYCL SC involving data 

pre-processing and post-processing, as well as complex decision 

making.



SYCL SC – Considerations

• SYCL SC should follow/monitor Vulkan SC progress

• Should be possible to implement SYCL SC on top of Vulkan SC

• Definition of “Safety Critical” similar to Vulkan SC’s definition

• Enable deterministic execution of software (in time, and space)

• Deterministic management of memory resources

• Dis-allow dynamic memory allocations?

• SYCL SC instance must allocate all memory resources at init time?

• Exception handling – can it be removed?

• Reduce complexity of runtime

• Move shader/kernel compilation step to offline

• Remove redundant or dev/debuging APIs 

• Reduce undefined behavior (document usage that leads to UB)

• Robust error handling



Memory Allocation

• Memory allocations influence execution time behaviour

• Dynamic memory allocations lead to memory fragmentation

• Memory fragmentation leads to non-deterministic execution

• Static memory allocations

• Application to define memory resources to be used in its lifetime

• Done during initialization

• Dis-allowing freeing of resources at runtime



Exceptions

• Typically allocated on the heap -> dynamically

• Typically use RTTI -> non-deterministic run time

-> behaviour depends on the compiler, not standard

Not necessarily bad by themselves

• Solutions:

• Implement exceptions as abort, perhaps with callback

• Error codes

• std::expected



Undefined Behaviour

• Ideally API has no undefined behaviour

• Undefined Behaviour should be minimized and constrained to specific areas

• Failure may crash GPU but not entire system

• APIs must have well defined valid usage

• Situations where undefined behaviour might occur should be well understood and documented

• API functions should document valid usage

• Valid usage must never lead to undefined behaviour

• Breaking valid usage may lead to undefined behaviour 



Exploratory Forum Process



Thank you!

• Join us at the SYCL SC Exploratory Forum

• Visit https://www.khronos.org/syclsc

• Or email sycl_sc_ef-chair@lists.khronos.org

• Meeting Mondays at 9:00 Pacific Time

https://www.khronos.org/syclsc
mailto:sycl_sc_ef-chair@lists.khronos.org


20© 2022 CoreAVI - Confidential

Thank you!


