Core AV

INNOVATING A SAFER TOMORROW

(C codeplay”

Enabling Al & HPC To Be Open Safe & Accessible To All

Exploring SYCL SC

IWOCL 2022

Presented by:
Ken Wenger Verena Beckham

WWW.Coreavi.com www.codeplay.com

Date: 5/05/2022

http://www.coreavi.com/
http://www.codeplay.com/

Welcome to IWOCL 2022

Ken Wenger, Senior Director Research & Innovation, CoreAVI

e CoreAVI: Providing safety critical GPU acceleration platforms using open
standards

e Long history with Khronos

Main contributor to OpenGL® SC 2.0

Involved in OpenCL™ early on

Main contributor to Vulkan® SC

Chaired Vulkan SC working group

(@)

o O O

e Background in safety critical GPU driver development (graphics and
compute)
e Contributing member of OpenGL SC 2.0 and Vulkan SC Working Group

e In my role now:
o Research the role of functional safety, and determinism in Machine
Learning and general computing platforms
o Design and lead implementation of CoreAVI’'s Safe Al platform

—

Welcome to IWOCL 2022

Verena Beckham, VP of Safety Engineering, Codeplay

e Codeplay: Enabling heterogeneous computing using open standards

e Long history with Khronos
o Involved in OpenCL early on
o Main contributor to SYCL 1.2, developed first conformant implementation
o Chaired SYCL WG since the beginning

We started supporting heterogeneous compute for computer games

Then mobile phones

Now high-performance compute

We want to unlock heterogeneous computing for safety-critical industries as well

—

Agenda

- Background on the Industry

- Use Cases for Compute/ML

- Non-SC tools and API availability
- SC tools and API availability

- Why SYCL SC

- SYCL SC in the Ecosystem

- SYCL SC Considerations

- The SYCL SC Exploratory Forum

Automotive Software

- There is a surprising amount of software in a car!
- Controlling the engine
- Controlling the breaking
- Controlling the lighting

- Now, software is starting to determine the value of the car
- Automatic wind screen wipers, automatic lights
- “Advanced Driver Assistance” (ADAS) features
- adaptive cruise control
- automatic emergency breaking
- self-parking

The “Software
Defined Vehicle”

- Holy grail: Autonomous vehicles (AV)
- This means: Al

Automotive Software is Changing

Simple C/C++ algorithms / assembly / Complex, large code bases, high-level
automatically generated from a model frameworks

SW mostly rewritten for every new HW Portability becomes important

Many small ECUs A few central, large processing units
Simple “embedded” HW (homogeneous, Heterogeneous, multi-core, shared
single core)

Different source code / company / framework Shared programming platforms
per ECU

—

Automotive Software

- Software is safety-critical
Software needs to be sufficiently free of bugs
If a bug is encountered it still needs to be safe
Software needs to cover all use cases

- Standards to ensure this, e.qg.
ISO 26262 — Functional Safety
- 1SO 21448 — Safety of the Intended Functionality

ISO 26262 includes guidelines:
How to write & track your requirements
How to design your software
How to (not) write your code
How to test your code

MISRA® guidelines cover a subset of ISO 26262 coding guidelines
- Guidelines for C - 1998
Guidelines for C++ - 2008
New guidelines for C++ (in development) — 202x

—

Other Industries

Avionics
More conservative than automotive
Space flight sometimes mission-critical instead
Nuclear
Rail
Medical

Use Cases

- Sensor Fusion - Tools
- Camera - TensorFlow
- Image Processing - OpenCV
- Computer Vision - Pytorch
- Deep Learning - Python Sci-Kit
- Vendor-specific APIs and
. Radar frameworks
- Signal Processing - SYCL
- Deep Learning - OpenCL
- Vulkan

- Combine input sources
- Compute decision

—

Tools vs Use Case Distribution (Non-SC)

- Sensor Fusion - Tools
- Camera - TensorFlow
- Image Processing - OpenCV
- Computer Vision - Pytorch
- Deep Learning - Python Sci-Kit
- Vendor-specific APIs and
.@ . Radar frameworks
- Signal Processing - SYCL
- Deep Learning - OpenCL
- Vulkan

- Combine input sources
- Compute decision

- Acceleration
Back-end execution of high-

level APIs -

Tools vs Use Case Distribution (SC)

- Sensor Fusion - APIs
- Camera - OpenVX 1.3
- Image Processing - Vulkan SC

- Computer Vision
- Deep Learning

- Missing
- Tools/Libraries
- Radar | - High-Level parallel
- Signal Processing

programming APl (SYCL SC)

- Deep Learning

- Combine input sources
- Compute decision

- Acceleration

Back-end execution of high-
level APIs

—

Why SYCL SC

Most embedded developers are familiar with C++

* Non-sc parallel compute dominated by C++
 Barrier to entry for C++ much lower than OpenCL or Vulkan SC

 Khronos already defines SYCL
A parallel programming API for C++

« Khronos has a long track record of producing SC APIs from existing ones (OpenGL SC, Vulkan SC,
OpenVX).

« SYCL SC is the next logical step
SC ecosystem based on open standards must have APIs for each level of abstraction

A single APl cannot address every problem

—

SYCL SC in the Khronos SC Ecosystem

Neural network models are trained in the cloud using a

O PyTorch 1 TensorFlow variety of platforms.

Once the model is trained it is exported and

@ converted to NNEF before being passed to a
Decisions \ safety critical API for inferencing.
[Prozzgiing J EEE] [NNEF : : . :
~ OpenVX provides high level APIs for Vision and Al with a safety
{} {} {} critical profile, enabling applications to quickly deploy trained NN
models.
Safety Critical Vision or Al Application

SYCL SC provides a general parallel programming API for
li/ § 1 < accelerated compute at the C++ level. A typical Al application

C\ pipeline will combine the discreet functionality exposed by OpenVX
SYCL _)penvxm with proprietary algorithms written using SYCL SC involving data
re-processing and post-processing, as well as complex decision
B & eking, i

. making.

(\ . . Vulkan SC is a lower, execution-level API that could be used to
Vuikan/&9 accelerate higher-level APIs like SYCL SC & OpenVX

—

SYCL SC — Considerations

SYCL SC should follow/monitor Vulkan SC progress
Should be possible to implement SYCL SC on top of Vulkan SC

Definition of “Safety Critical” similar to Vulkan SC’s definition
. Enable deterministic execution of software (in time, and space)
Deterministic management of memory resources
. Dis-allow dynamic memory allocations?
SYCL SC instance must allocate all memory resources at init time?
Exception handling — can it be removed?

Reduce complexity of runtime
. Move shader/kernel compilation step to offline
Remove redundant or dev/debuging APIs

* Reduce undefined behavior (document usage that leads to UB)

* Robust error handling

Memory Allocation

Memory allocations influence execution time behaviour
Dynamic memory allocations lead to memory fragmentation
Memory fragmentation leads to non-deterministic execution

Static memory allocations

Application to define memory resources to be used In its lifetime
Done during initialization

Dis-allowing freeing of resources at runtime

—

Exceptions

 Typically allocated on the heap -> dynamically
« Typically use RTTI -> non-deterministic run time
-> pehaviour depends on the compiler, not standard

Not necessarily bad by themselves

« Solutions:
* Implement exceptions as abort, perhaps with callback
« Error codes
 std::expected

—

Undefined Behaviour

Ideally APl has no undefined behaviour

Undefined Behaviour should be minimized and constrained to specific areas
Failure may crash GPU but not entire system

APIs must have well defined valid usage
Situations where undefined behaviour might occur should be well understood and documented

API functions should document valid usage
Valid usage must never lead to undefined behaviour
Breaking valid usage may lead to undefined behaviour

—

Proven Khronos Process
to ensuring industry
requirements are fully
understood before
starting standardization
initiatives

Exploratory Forum Process

Exploring real-world industry
requirements for an AP/ for high-
level heterogenous computing
for safety-critical contexts

Any company is welcome
to join
No cost or IP Licensing

obligations

Project NDA to cover
Exploratory Group
Discussions

GGGGG

SYCL SC
Exploratory Forum

Online discussion forum and
weekly Zoom calls, probably for a
few months

No detailed design activity
to protect participants IP

Explore if consensus can be built
around an agreed Scope of Work
document

=

Scope of
Work
Document

7

Agreed SOW
document

P,

released from
NDA and made

—

public

Creation of

Khronos group to

create an API
based on the
Scope of Work

Thank you!

 Join us at the SYCL SC Exploratory Forum
- Visit https://www.khronos.org/syclsc
« Or email sycl sc ef-chair@lists.khronos.org

* Meeting Mondays at 9:00 Pacific Time

https://www.khronos.org/syclsc
mailto:sycl_sc_ef-chair@lists.khronos.org

*Sre AV

INNOVATING A SAFER TOMORROW

Thank you!

