
Powering Amber molecular dynamics simulations 

on GPUs with SYCL. 

Andreas W. Götz, San Diego Supercomputer Center, 

University of California San Diego

Andreas Goetz, Guoquan Chen, Ram Ramanujam, Kittur Ganesh.



Acknowledgments

• Guoquan Chen (Intel)

• Support from many Intel software engineers

• Ram Ramanujam (Intel)

• Kittur Ganesh (Intel)

• Intel oneAPI Centers of Excellence Program (Funding)



What is Amber?

A set of force field parameters

Currently recommended fixed charge force fields

• Proteins: ff14SB 

• DNA and RNA: OL15 and OL3

• Lipids: lipid17

• Carbohydrates: GLYCAM_06j

Parameters for general organic molecules

• GAFF2 (General Amber Force Field version 2)

Experimental polarizable force fields

• E.g. ff02EP

Parameters for solvents and ions



What is Amber?

A molecular dynamics simulation package

• Around for over 30 years

• Approx. 50 principal contributors to current codes

• Independent of accompanying force fields 
(supports also CHARMM force field)

• Distributed in two parts

AmberTools

• Preparatory and analysis programs

• Molecular dynamics programs sander, mdgx

• Open source, mostly GPL

• Yearly release (spring)

Amber

• High-performance MD program pmemd

• Academic licensing

• Release every even year

A set of force field parameters

Currently recommended fixed charge force fields

• Proteins: ff14SB 

• DNA and RNA: OL15 and OL3

• Lipids: lipid17

• Carbohydrates: GLYCAM_06j

Parameters for general organic molecules

• GAFF2 (General Amber Force Field version 2)

Experimental polarizable force fields

• E.g. ff02EP

Parameters for solvents and ions



Amber is widely used

Amber user base

• Academic and industrial research

• User base steadily growing

• Installed on all major compute centers

• Popularity has been growing in particular since 
about 2010

• Release of CUDA code

• Wide availability of GPUs enabled science 
for large user base

Version Year Amber AmberTools

10 2008 901 8,186

11 2010 969 10,210

12 2012 1,055 10,230

14 2014 995 12,203

16 2016 955 14,031

18 2018 1,032 16,034

20 2020 1,169 18,648

Amber licenses and AmberTools downloads since 2008.

PME GPU implementation

over 250 citations per year!



Biomolecular modeling over the years

Schlick et al. 
Annu. Rev. 
Biophys. 50 
(2021) 267. 



Amber is widely used

Popularity of Molecular Dynamics is Growing

Schlick et al. Annu. Rev. Biophys. 50 (2021) 267. 



Amber is widely used

Amber is among the most popular codes for biomolecular simulations

Schlick et al. Annu. Rev. Biophys. 50 (2021) 267. 



Amber typical applications

Biomolecular simulations

• Proteins, DNA, RNA, lipids, sugars, glycoproteins

• Building blocks of cells and tissue

• Understand how life works at the nanoscale

• Understand biomolecular function and disease 

• Computational drug design

Molecular dynamics simulations

• Structure and function of biomolecular systems

• Protein folding

• Enzymatic reaction mechanisms

• Stability of protein / drug complexes

• Part of drug design pipeline (Improve drug leads via 
free energy simulations)

• And many more ….



Modeling molecular interactions

Quantum Mechanics

Solve Schrödinger equation 

for many-electron system

Electron density of amino acid cystein



Modeling molecular interactions

Molecular Mechanics Force Fields

Quantum Mechanics
Simple “ball and stick model” for molecules



Modeling molecular interactions

Molecular Mechanics Force Fields

Quantum Mechanics



Molecular dynamics powered by GPUs

Water exit

pathway 1 Water exit

pathway 2

Cytochrome c oxidase enzyme

Yang, Skjevik, Han Du, Noodleman, Walker, Götz, 
BBA Bioenergetics 2016 (1857) 1594.



Molecular dynamics powered  by GPUs

Water exit

pathway 1 Water exit

pathway 2

Cytochrome c oxidase enzyme

Yang, Skjevik, Han Du, Noodleman, Walker, Götz, 
BBA Bioenergetics 2016 (1857) 1594.

Millions of time steps required• Femtosecond timesteps

• Need to simulate micro to milliseconds

• 100s of millions of time steps required

• < 1 millisecond wall clock per time step



Cytochrome c oxidase enzyme

Yang, Skjevik, Han Du, Noodleman, Walker, Götz, 
BBA Bioenergetics 2016 (1857) 1594.

Molecular dynamics powered by GPUs

Water exit

pathway 1 Water exit

pathway 2

Millions of time steps required

Cellulose in water

408,576 atoms

Amber 18 molecular dynamics software

Götz, Williamson, Xu, Poole, Le 
Grand, Walker, J Chem Theory 
Comput 2012 (8) 1542.

Le Grand, Götz, Walker, Comput 
Phys Comm 2013 (184) 374.

Salomon-Ferrer, Götz, Poole, Le 
Grand, Walker, J Chem Theory 
Comput 2012 (8) 1542.

• Femtosecond timesteps

• Need to simulate micro to milliseconds

• 100s of millions of time steps required

• < 1 millisecond per time step



Porting Amber to SYCL – Motivation

Amber CUDA code

• Very successful and popular code

• Fast classical molecular dynamics code for Nvidia GPUs

• Enables microsecond MD simulations on single gaming GPUs

• Enables large scale ensemble simulations on GPU clusters and large supercomputers

Why then do we want to port Amber to SYCL? 

• We want to enable Amber to run on Intel GPUs

• SYCL is an open standard

• Performance portability

• SYCL works on multi-core CPUs and 
accelerators from all vendors (Nvidia, AMD, Intel)

• Single code base should keep code maintainable

• (currently Amber uses Fortran for CPU,
 CUDA for Nvidia GPUs, HIP/ROCm for AMD GPUs)

Intel Data Center GPU 

Max powers the Aurora 

Supercomputer at ANL.



Intel Data Center GPU Max (PVC): Performance

Source: https://wccftech.com/intel-details-ponte-vecchio-gpu-sapphire-rapids-hbm-performance-up-to-2-5x-faster-than-nvidia-a100/



Porting Amber to SYCL: Challenges

Amber GPU accelerated MD code: pmemd.cuda

• Large set of highly optimized kernels for particle force calculations, 
time stepping, temperature and pressure control and enhanced sampling algorithms 

Many different methods with different code paths

• Implicit (GB) and explicit solvent (PME) molecular dynamics

• Different thermostats and barostats (for NpT and NVT simulations)

• Many enhanced sampling and free energy algorithms

• Restraints (e.g. for umbrella sampling)

• Steered molecular dynamics

• Thermodynamic integration

• Etc.

• Ensemble simulation methods

• Temperature- and Hamiltonian- replica exchange

• Constant pH and constant electrochemical potential methods



Porting Amber to SYCL: Challenges

Technical details

• Multiple precision models

• SPFP (default)

• DPFP (slow, accurate, reference)

• Single- and multiple GPU support

• CUDA

• MPI + CUDA

• CUDA intrinsics

• PTX inline assembly code

CUDA code history

• Many years of initial development

• Over a decade of contributions 
from dozens of developers

• Not easy to re-write from scratch

MD Energy conservation with various precision models

GPU (SPSP)

GPU (SPFP)

GPU (DPFP)

CPU

SP = FP32 (single precision floating point)

FP = 64-bit fixed precision

DP = FP64 (double precision floating point)

CPU



Porting Amber to SYCL: Challenges
Amber pmemd source code statistics



Porting Amber from CUDA to SYCL

Steps from CUDA to a working SYCL version of Amber

• Migrate CUDA code to SYCL via Intel DPC++ Compatibility Tool 
(equivalent open-source version: SYCLomatic)

• Convert CUDA intrinsic and assembly code

• Compile using Intel oneAPI DPC++ compiler; fix compile time errors & warnings

• Debug and verify functional correctness

• Profile and optimize on Intel discrete GPU                



Status of Amber SYCL port

SYCL code is based on Amber 20

• Project started in 2021

• Work with stable code base

• Initial goal: Get basic MD working with SYCL on Intel Data Center GPUs

• Later: Feature completeness with future Amber releases

Amber 20 port and validation

• Ported CUDA header & source files (~60K CUDA source lines) using Intel DPC++ Compatibility tool

• Added kernel by kernel CUDA to SYCL verification framework 

• Supports regular PME MD simulations (thermostats, barostats, restraints)

• Verified PME NVE correctness with JAC, FactorIX, Cellulose, STMV on Intel discrete GPU Ponte Vecchio

• Tests from Amber test suite

• Works on Intel Max Series Datacenter GPUs



Amber CUDA vs SYCL code
CUDA and SYCL kernels are quite similar



Amber SYCL code is numerically accurate

Numerically correct SYCL implementation of most important regular PME MD, verified on Intel PVC

-58360

-58310

-58260

-58210

-58160

-58110

-58060

-58010

1
4

8
9

5
14

2
1

8
9

2
3

6
2

8
3

3
3

0
3

7
7

42
4

4
7

1
5

1
8

5
6

5
6

1
2

6
5

9
7

0
6

7
5

3
8

0
0

8
4

7
8

9
4

94
1

9
8

8
1

0
3

5
1

0
8

2
1

1
2

9
1

1
7

6
1

2
2

3
1

2
7

0
1

3
1

7
1

3
6

4
1

4
1

1
14

58
1

5
0

5
1

5
5

2
1

5
9

9
1

6
4

6
1

6
9

3
1

7
4

0
1

7
8

7
1

8
3

4
1

8
8

1
1

9
2

8
19

75
2

0
2

2
2

0
6

9
2

1
1

6
2

1
6

3
2

2
1

0
2

2
5

7
2

3
0

4
2

3
5

1
2

3
9

8
2

4
4

5
24

92
2

5
3

9
2

5
8

6
2

6
3

3
2

6
8

0
2

7
2

7
2

7
7

4
2

8
2

1
2

8
6

8
2

9
1

5
2

9
6

2

Etot for JAC NVE SPFP with 2fs for 60ns cut=12

Tot_v100_cut12_spfp Tot_pvc_cut12_spfp

Energy conservation

SYCL, Intel PVC (blue)

CUDA, Nvidia V100 (orange)

JAC (Joint Amber CHARMM benchmark)

• DHFR = Dihydrofolate reductase

• 23,558 atoms



Performance for STMV NVE 4fs benchmark

Benchmark setup

• Intel GPU Max 1550 with 2 tiles and 1024 Eus

• Each tile exposed as device

• Amber benchmark STMV NVE 4fs 
(Satellite Tobacco Moasic Virus in water, about 1M atoms)

Performance optimizations

• Guided by Intel oneProf, oneTrace, and Vtune

STMV image 

(RCSB PDB)



Key optimizations of nonbonded force kernels 

Replace subgroup shuffle with shared local memory (SLM)

• Subgroup shuffle with variable lane is (currently) inefficient

• Introduce SLM to replace all relevant shuffles with nonuniform lanes

• Significant stalls are reduced, especially pipeline stalls

Force computation (atom properties like coordinates x, y, 

z, charge q in registers / private memory of work items)

Pairwise force accumulation



Key optimizations of nonbonded force kernels 

Fix ND range

• Was fixed to 800, increase to (10 * max_eu_number)

• Increases XVE occupancy from 77% to 98%

Memory space casting in global atomic operations

• Pointer alias outside the kernel to simplify the pointer address in the atomic operator

• Original member pointer in generic address space resulted in dynamic address space 
checking and casting  

Use faster esimd based radix sort implementation

• oneDPL stable_sort => oneDPL Radix_sort_by_key (esimd based)



Nonbonded force kernel profiling data

Oneprof: Wrong ND range, low XVE activity / thread occupancy



Nonbonded force kernel profiling data

Oneprof: Optimized ND range + other optimizations



Top hot spots before – after optimizations

H100 (ms) 
CUDA

PVC 1T (ms) 
Base

PVC 1T (ms)
Opt

NBFrc16 1.95 14.33 4.45

MakeOrtho16 1.90 6.64 3.58

FillQMesh 0.32 2.05 0.70

ShakeHMR 0.26 0.19 0.22

DPL Sort 0.08 0.08

GradSum64 0.12 1.34 0.45



20% 22% 22%

41%
48%

52%

73%

100%

0%

20%

40%

60%

80%

100%

120%

P
e

rf
 a

s 
%

 o
f 

H
1

0
0

-8
0

G
B

 (h
ig

h
e

r 
is

 b
e

tt
e

r) 1 tile performance evolution of Intel GPU Max 1550 vs Nvidia H100-80GB

Performance evolution for STMV NVE 4fs benchmark

STMV image 

(RCSB PDB)

After optimization:

1 tile (1/2 Intel GPU Max 1550)

gives > 50% H100-80GB performance



Hot spots – scaling to two PVC tiles

H100 (ms) 
CUDA

PVC 1T (ms) 
Base

PVC 1T (ms)
Opt

PVC 2T (ms)

NBFrc16 1.95 14.33 4.45 3.59

MakeOrtho16 1.90 6.64 3.58 2.30

FillQMesh 0.32 2.05 0.70 2.10

ShakeHMR 0.26 0.19 0.22 1.07

DPL Sort 0.08 0.08 0.08

GradSum64 0.12 1.34 0.45 0.23



How can we scale to two Intel PVC tiles?

Observations for FillQMesh kernel

• Very bad scaling 1T –> 2T

• Stalls appear to be related to inter-tile traffic

• Too many global atomics

How can we use two tiles?

• Implicit scaling (treat PVC card as one device)

• Explicit scaling (treat two tiles as separate devices and parallelize with MPI)

Final optimizations for two PVC tiles

• Use MPI based explicit scaling (treat each tile as separate device)

• Optimize force reduction across 2 tiles

• Use point to point communication, reduce data on 1 tile



25%

40%

31%
36% 36%

72%

82%

73%

100%

0%

20%

40%

60%

80%

100%

120%

Implicit-base Implicit-best Host
MPI_AllReduce

Device
MPI_AllReduce

in-plane

Device
MPI_AllReduce

out-plane

Reduction with
p2p MPI

Reduction with
p2p MPI+sort

A100 H100

P
e

rf
 a

s 
%

 o
f 

H
1

0
0-

8
0

G
B

 (h
ig

h
e

r 
is

 b
e

tt
e

r)

2 tiles performance evolution of Intel GPU Max 1550 vs Nvidia H100-80GB

Performance evolution for STMV NVE 4fs benchmark

After optimization:

2 tiles (Intel GPU Max 1550)

gives  82% H100-80GB performance

STMV image 

(RCSB PDB)

H100-80GBA100-80GB



51%

82%

73%

100%

0%

20%

40%

60%

80%

100%

120%

PVC 1550 1tile PVC1550 2tiles A100-80G H100

P
e

rf
 a

s 
%

 o
f 

H
1

0
0-

8
0

G
B

 (h
ig

h
e

r 
is

 b
e

tt
e

r)

Performance of Intel GPU Max 1550 vs Nvidia H100-80GB

Performance summary for STMV NVE 4fs benchmark

STMV image 

(RCSB PDB)

H100-80GBA100-80GB



Amber SYCL Future

Catch up to Amber 24 (almost complete)

• Initial SYCL port was based on Amber 20

• Many changes to CUDA code between Amber 20 and Amber 24

• Started from scratch with Amber 24 – this was easier than porting changes

Feature completeness

• Enable support for missing features / code paths (GB, REMD, TI, etc)

• Most code is ported but needs testing, profiling, optimization

Portability and performance portability

• Intel gaming GPUs (does not work out of the box)

• Nvida GPUs via CUDA backend

• AMD GPUs via HIP/ROCm backend

• Performance optimizations



Amber SYCL Future

Address SYCL code sustainability

• Cannot afford two code bases (CUDA/HIP and SYCL)               

• Need to convince developers to switch to SYCL

Who are the (future) developers

• Domain scientists, not software engineers

• These developers want to solve scientific problems, with as little effort and as quickly as possible

• Current generation is familiar with CUDA

• It is hard to convince developers to face the learning curve to adopt new/different technologies

• Need good arguments to convince switching from CUDA

Requirements for adoption of Amber SYCL port

• Feature completeness

• Performance on Nvidia (AMD) GPUs must be similar or better than CUDA (HIP) code



Summary – Powering Amber on GPUs with SYCL

Amber is a powerful and widely used biomolecular simulations software.

Intel oneAPI was used to port the Amber high-performance molecular dynamics engine from 
CUDA to SYCL and optimize the SYCL code.

The Intel oneAPI powered SYCL port is numerically stable and shows strong performance on 
Intel Datacenter GPU Max hardware.

Future SYCL work will focus on

• Porting of advanced simulation techniques 

• Performance and portability on Intel consumer hardware and Nvidia and AMD GPUs



Thank you for your attention.


	Slide 1
	Slide 2: Acknowledgments
	Slide 3: What is Amber?
	Slide 4: What is Amber?
	Slide 5: Amber is widely used
	Slide 6: Biomolecular modeling over the years
	Slide 7: Amber is widely used
	Slide 8: Amber is widely used
	Slide 9: Amber typical applications
	Slide 10: Modeling molecular interactions
	Slide 11: Modeling molecular interactions
	Slide 12: Modeling molecular interactions
	Slide 13: Molecular dynamics powered by GPUs
	Slide 14: Molecular dynamics powered  by GPUs
	Slide 15: Molecular dynamics powered by GPUs
	Slide 16: Porting Amber to SYCL – Motivation
	Slide 17: Intel Data Center GPU Max (PVC): Performance
	Slide 18: Porting Amber to SYCL: Challenges
	Slide 19: Porting Amber to SYCL: Challenges
	Slide 20: Porting Amber to SYCL: Challenges
	Slide 21: Porting Amber from CUDA to SYCL
	Slide 22: Status of Amber SYCL port
	Slide 23: Amber CUDA vs SYCL code
	Slide 24: Amber SYCL code is numerically accurate
	Slide 25: Performance for STMV NVE 4fs benchmark
	Slide 26: Key optimizations of nonbonded force kernels 
	Slide 27: Key optimizations of nonbonded force kernels 
	Slide 28: Nonbonded force kernel profiling data
	Slide 29: Nonbonded force kernel profiling data
	Slide 30: Top hot spots before – after optimizations
	Slide 31: Performance evolution for STMV NVE 4fs benchmark
	Slide 32: Hot spots – scaling to two PVC tiles
	Slide 33: How can we scale to two Intel PVC tiles?
	Slide 34: Performance evolution for STMV NVE 4fs benchmark
	Slide 35: Performance summary for STMV NVE 4fs benchmark
	Slide 36: Amber SYCL Future
	Slide 37: Amber SYCL Future
	Slide 38: Summary – Powering Amber on GPUs with SYCL
	Slide 39

