oneAPI

An Easier, Short Path to Productive Heterogeneous Programming

Source-to-Source
CUDA"to SYCL" Code Migration Tool

Intel® DPC++ Compatibility Tool | Coming Soon: Open Source SYClLomatic project

Wang Zhiming, Senior Software Engineer

intel. May 2022

*Other names and brands may be claimed as the property of others.

Notices & Disclaimers

All product plans and roadmaps are subject to change without notice.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex. Results may vary.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details.
No product or component can be absolutely secure.

Intel technologies may require enabled hardware, software or service activation.

Results have been estimated or simulated.

No product or component can be absolutely secure.

Your costs and results may vary.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel and the Intel logo are trademarks of Intel Corporationin the U.S. and/or other countries.

Other names and brands may be claimed as the property of others.

SYCL isatrademark of the Khronos Group Inc.

http://www.intel.com/PerformanceIndex

Agenda

= Easier, Short Path to Productive Heterogeneous Programming
= Whatis Intel® DPC++ Compatibility Tool

= Open Source project: SYCLomatic (Coming Soon)
= SYCLomatic Usage Flow

= SYCLomatic Architecture

= Migrating VectorAdd Example

= Migration Rule Example

= User Defined Migration Rule

= Summary / Call to Action

—asier, Short Path to Heterogeneous Programming

Application Workloads Need Diverse Hardware

Diverse architectures have made software
developmentincreasingly complex for developers ——t

Scalar Vector Spatial Matrix

SYCL" with oneAPIl open, cross-architecture,
standards-based programming Middleware & Frameworks

= Allows developers to expand the value of their
investments across architectures

» Provides choice & freedom from proprietary, oneAPI CPU GPU FPGA Other accel.

Siﬂg'@-VeﬂdOI’ |OC|<-iﬂ programming programming programming programming
model model model models

Intel embraces open development to advance
ecosystem innovation

Other accel.

» CUDA"to SYCL code migration tool provides developers
a productive path to create single-source portable code

*Other names and brands may be claimed as the property of others.

What is Intel” DPC++ Compatibility Tool

= Thetoolassists in migrating your existing CUDA*
code to SYCL* code which can run on any platform
that has SYCL compiler support Application Workloads

Optimized Middleware & Frameworks

= Thetoolports both CUDA language kernels and
library API calls Intel oneAPI Product

Direct API-Based
: Programmin Programmin
= Toolwas developed by analyzing declaratory code = = . =

. . . Compatibility Analysis &
of CUDA and developing migration rules that allow tool Dt Parallel . Debug iboE
porting of CUDA code to SYCL Ct+ Libraries

» The goal of the tool: make it as easy as possible for Low-Level Hardware Interface
developers to migrate their existing CUDA
codebase to SYCL

FPGA THER ACCEL.
= Intel” DPC++ Compatibility Tool is OTHERACC

part of the Intel® one API Base Toolkit

BASE
TOOLKIT

Intel oneAPI: intel.com/oneAPI

*Other names and brands may be claimed as the property of others.

Open Source Project SYCLomatic — Coming Soon

Intelis providinga CUDA* to SYCL* migration tool under an open source license as project
SYCLomatic.

= Source to source code migration tool that enables developers to create single-source, portable code for hardware
targets regardless of vendor

= Simplifies development while delivering performance and productivity

= Reducestime and costs for code maintenance
A community to share, collaborate & contribute software technologies

Available on GitHub in the coming weeks

= Use the tool, please provide feedback!

*Other names and brands may be claimed as the property of others.

https://github.com/oneapi-src/SYCLomatic
https://github.com/oneapi-src/SYCLomatic-test

SYCLomatic Usage Workflow

» Collectcompilation options of the
Developer's CUDA" source from project

build scripts, eg. Maketfile, vexproj file Complete Coding &
Tune to Desired
00-95%" Performance
Transformed

= Assist developers migrating code writtenin ap— [— . [

CUDA to SYCL by generating SYCL code L) e Human Readable 2 |

wherever ibl =3 J SYCL with Inline |

POSSIDIE - $: Comments J
De\/eloper’s Compatibility SYCL

= Typically, 20%-95%* of CUDA code CUDA Source foo Source Code

automatically migrates to SYCL code

* Inline comments are provided to help
developer complete and tune the code

+|ntel estimates as of September 2021. Based on measurements on a set of 70 HPC benchmarks *Other names and brands may be claimed as the property of others.

and samples, with examples like Rodinia, SHOC, PENNANT. Results may vary.

SYCLomatic Architecture aof2sides

@Ct AST

Inter-procedural

Rnalyzer Lo Migration Set of
Abstract source
Clang SRR Iz rules modifications
Front-End! (AST) . engine

Users source code

in CUDA (.cu,

___ i

Rewrite engine

.cpp, -h, etc.)

k4

Users make file l

\ Clang Format /

v

SYCL source code
q—
(.cpp, .h, etc.)

Embedded comments
with hints
how to complete the code

— Original parts
3 party/user Ext. Binaries in CUDA
data /Modules
A produces B/
Int. Modul
ADB B consumes A/ |:I nt. Modules i
B depends A

- Intel’s data or produced data

Intercept-build Compilation
DB

Helper header library

*Other names and brands may be claimed as the property of others. 1. livm project: https://github.com/llvm/llvm-project/tree/main/clang

SYCLomatic Architecture o2 sides)

- Helper header library
Helper User interface Helper Implementation

Memory manager a

L\ J

sycl::buffer/accessor

Memory API

Legend

- Helper header library component

A—™B AusesB

|:| SYCL/oneAPI component

singleton

Device manager b
singleton

Y

Device API sycl::device/queue

sycl::image/accessor/
sampler

Image wrappers

_ L
L
_ --
[+
.
- L
L-

Image API

i > I::atomi f - -
Atomics AFL Sycl-atomic_re a. Maps host virtual pointers
and SYCL buffers
Math API » sycl:: math functions b. Manages all SYCL capable
devices available on the
oneDPL extensions _ system

oneapi::dpl:: functions

oneDPL Extensions

implementation

c. Address semantic
differences

oneapi::mkl:: functions

Y

BLAS Wrappers

Migrating VectorAdd Example

> global voild VectorAddKernel(float* A, float* B, float* C) void VectorAddKernel(float* A, float* B, float* C, sycl::nd_item<3i »

SYCL" Code

»fiinclude <CL/sycl.hpp>
#include <dpct/dpct.hpp>
#idefine VECTOR_SIZE 256

#define VECTOR_SIZE 256

sitem_ctl)

{
{
|| A[item_ctl.get_local_id(2)] = item_ctl.get_local_id(2) + 1.0f;
B[item_ctl.get_local_i1d(2)] = item_ctl.get_local _id(2) + 1.0f;
}
N

C[item_ctl.get_local_1d(2)]
A[item_ctl.get local id(2)] + B[item_ctl.get local _id(2)];
}

int main()
{

int main() dpct::device_ext &dev _ctl = dpct::get_current_device();
sycl::queue &q ctl = dev_ctl.default_queue();
float *d_A, *d B, *d C; float *d_A, *d B, *d _C;

d_A
d_B
d_C

sycl::malloc_device<float>(VECTOR_SIZE, q_ctl);
sycl::malloc_device<float>(VECTOR_SIZE, q_ctl);
sycl::malloc_device<float>(VECTOR_SIZE, q_ctl);

*Other names and brands may be claimed as the property of others.

Migrating VectorAdd Example (2)

float Result[VECTOR_SIZE] = { };

for (int 1 = 0; 1 < VECTOR_SIZE; i++) {
if (1% 16 ==0) {
printf("\n");

}
printf("%f ", Result[i]); s
}

return 0;

*Other names and brands may be claimed as the property of others.

SYCL" Code

q_ctl.submit([&](sycl::handler &cgh) { @
cgh.parallel_for(svcl::nd_range<3>(
sycl::range<3>(1, 1, VECTOR_SIZE),
sycl::range<3>(1, 1, VECTOR_SIZE)),
[=]1(sycl::nd_item<3> item ctl) {
VectorAddKernel(d A, d B, d_C, item ctl);
s
s

float Result[VECTOR_SIZE] = { };
q_ctl.memcpy(Result, d_C, VECTOR_SIZE * sizeof(float)).wait();

sycl::free(d_A, q_ctl);

sycl::free(d_B, q_ctl); @
sycl::free(d_C, q_ctl);

for (int 1 = ©; 1 < VECTOR_SIZE; i++) {

if (1% 16 ==0) {
printf("\n");

}
printf("%f ", Result[i]); a
}

return 0;

aa—.
intel.

Migration Rule Example

« Sample code

« Inputcode: cudaMalloc(&d_A, vector_size * sizeof(float))
« Outputcode: d_A =sycl:malloc_device<float>(vector_size, dpct: get_default_queue()),

o AST tree

| -CallExpr «<line:12:3, col:51> ‘cudaError_t':'cudaError’

| |-ImplicitCastExpr <col:3> 'cudaError_t (*)(float **, size t)' <FunctionToPointerDecay>

| | ~-DeclRefExpr <col:3> 'cudaError_t (float **, size t)' lvalue Function 0x56439167c5a8 'cudaMalloc' 'cudaError_t (float **, size t)
| |-UnaryOperator <col:15, col:16> 'float **' prefix '&" cannot overflow

| | ~-DeclRefExpr <col:16> 'float *' lvalue Var @x564391659b98 'd A' 'float *'

| ~-BinaryOperator <col:21, col:49> 'unsigned long' '*'

| | -ImplicitCastExpr <col:21> 'unsigned long' <IntegralCast>

| | ~-ImplicitCastExpr <col:21> '"int' <LValueToRValue>

| | " -DeclRefExpr <col:21> 'const int' lvalue Var ©x564391659940 'vector _size' 'const int' non_odr_use constant

| " -UnaryExprOrTypeTraitExpr <col:35, co0l:49> 'unsigned long' sizeof 'float’

« AST Matcher
« callExpr(allOf(callee(functionDecl(hasAnyName(“cudaMalloc”) ...).bind("callExpr")

o AST Matcher Action

« Visitthe callExpr node, analyze the parameters of the cudaMalloc, and generate migration result

*Other names and brands may be claimed as the property of others.

User Defined Migration Rule

* Provides a way to extent the migration capability by defining migration rule in Yaml
file

» Example: Rule “rule_forceinline” is used to quide the migration of macro
”_forceinline__"

- Rule: rule_forceinline # [Required] The unique name of the rule
Kind: Macro # [Required] The kind of the rule [Macro [API]
Priority: Takeover # [Required] The priority of the rule [Takeover | Default |Fallback]
In: __ forceinline__ # [Required] The target macro name in the input source code
Out: inline # [Required] The migrated name of the macro in output source code
Includes: ["header1.h"] # [Required] A list of header file name which the new macro depends on, can be an empty list

» User defined migration rule target to cover migration of API, Datatype, Class,
ENUM type, Macro, Include, Specifier/Qualifier/Attribute

= Part of feature will be available in next Intel one APl release

Summary / Call-to-Action

» Both Intel® DPC++ Compatibility Tooland SYCLomatic assist in migrating your
existing CUDA" code to SYCL" code which can run on any platform that has SYCL

compiler support

* Intel® DPC++ Compatibility Tool is the Intel product version of SYCLomatic

» SYCLomatic will open source in coming weeks

= Tryit
» Intel® DPC++ Compatibility Tool in Intel® one APl Base Toolkit - Free:
coming soon

*Other names and brands may be claimed as the property of others.

https://github.com/oneapi-src/SYCLomatic

More Resources

 SYCLomatic Project on GitHub: GetStartedGuide.md, Contributing.md guide
(coming soon)

» Get started developing
= Book: Mastering Programming of Heterogeneous Systems using C++ & SYCL
» Essentials of SYCL training
* The oneAPl samples on Github

» oneAPI| specification and SYCL specification

= Intel® DevCloud - A free environment to access Intel® one API Tools and develop
and test code across a variety of Intel® architectures (CPU, GPU, FPGA)

» CodeProject: Using one APl to convert CUDA codeto SYCL

*Other names and brands may be claimed as the property of others.

https://github.com/oneapi-src/SYCLomatic
https://github.com/oneapi-src/SYCLomatic/blob/main/GetStartedGuide.md
https://github.com/oneapi-src/SYCLomatic/blob/main/CONTRIBUTING.md
https://protect-eu.mimecast.com/s/P9FyCjvlRipPPWgT5ya8e?domain=link.springer.com
https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/dpc-essentials.html
https://github.com/oneapi-src/oneAPI-samples
https://spec.oneapi.io/releases/index.html#id1
https://www.khronos.org/sycl/
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://protect-eu.mimecast.com/s/Whb3C026RU6ZZ1jTwUMjj?domain=codeproject.com

