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—asier, Short Path to Heterogeneous Programming

Application Workloads Need Diverse Hardware

Diverse architectures have made software
developmentincreasingly complex for developers ——t

Scalar Vector Spatial Matrix

SYCL" with oneAPIl open, cross-architecture,
standards-based programming Middleware & Frameworks

= Allows developers to expand the value of their
investments across architectures

» Provides choice & freedom from proprietary, oneAPI CPU GPU FPGA Other accel.

Siﬂg'@-VeﬂdOI’ |OC|<-iﬂ programming programming programming programming
model model model models

Intel embraces open development to advance
ecosystem innovation

Other accel.

» CUDA"to SYCL code migration tool provides developers
a productive path to create single-source portable code

*Other names and brands may be claimed as the property of others.




What is Intel” DPC++ Compatibility Tool

= Thetoolassists in migrating your existing CUDA*
code to SYCL* code which can run on any platform
that has SYCL compiler support Application Workloads

Optimized Middleware & Frameworks

= Thetoolports both CUDA language kernels and
library API calls Intel oneAPI Product

Direct API-Based
: Programmin Programmin
= Toolwas developed by analyzing declaratory code = = . =

. . . Compatibility Analysis &
of CUDA and developing migration rules that allow tool Dt Parallel . Debug iboE
porting of CUDA code to SYCL Ct+ Libraries

» The goal of the tool: make it as easy as possible for Low-Level Hardware Interface
developers to migrate their existing CUDA
codebase to SYCL

FPGA THER ACCEL.
= Intel” DPC++ Compatibility Tool is OTHERACC

part of the Intel® one API Base Toolkit

BASE
TOOLKIT

Intel oneAPI: intel.com/oneAPI

*Other names and brands may be claimed as the property of others.




Open Source Project SYCLomatic — Coming Soon

Intelis providinga CUDA* to SYCL* migration tool under an open source license as project
SYCLomatic.

= Source to source code migration tool that enables developers to create single-source, portable code for hardware
targets regardless of vendor

= Simplifies development while delivering performance and productivity

= Reducestime and costs for code maintenance
A community to share, collaborate & contribute software technologies

Available on GitHub in the coming weeks

= Use the tool, please provide feedback!

*Other names and brands may be claimed as the property of others.


https://github.com/oneapi-src/SYCLomatic
https://github.com/oneapi-src/SYCLomatic-test

SYCLomatic Usage Workflow

» Collectcompilation options of the
Developer's CUDA" source from project

build scripts, eg. Maketfile, vexproj file Complete Coding &
Tune to Desired
00-95%" Performance
Transformed

= Assist developers migrating code writtenin ap— [— . [

CUDA to SYCL by generating SYCL code L ) e Human Readable 2 |

wherever ibl =3 J SYCL with Inline |

POSSIDIE - $ : Comments J
De\/eloper’s Compatibility SYCL

= Typically, 20%-95%* of CUDA code CUDA Source foo Source Code

automatically migrates to SYCL code

* Inline comments are provided to help
developer complete and tune the code

+|ntel estimates as of September 2021. Based on measurements on a set of 70 HPC benchmarks *Other names and brands may be claimed as the property of others.

and samples, with examples like Rodinia, SHOC, PENNANT. Results may vary.



SYCLomatic Architecture aof2sides

@Ct AST

Inter-procedural

Rnalyzer Lo Migration Set of
Abstract source
Clang SRR Iz rules modifications
Front-End! (AST) . engine

Users source code

in CUDA (.cu,

___ i

Rewrite engine

.cpp, -h, etc.)

k4

Users make file l

\ Clang Format /

v

SYCL source code
q—
(.cpp, .h, etc.)

Embedded comments
with hints
how to complete the code

— Original parts
3 party/user Ext. Binaries in CUDA
data /Modules
A produces B/
Int. Modul
ADB B consumes A/ |:I nt. Modules i
B depends A

- Intel’s data or produced data

Intercept-build Compilation
DB

Helper header library

*Other names and brands may be claimed as the property of others. 1. livm project: https://github.com/llvm/llvm-project/tree/main/clang




SYCLomatic Architecture o2 sides)

- Helper header library
Helper User interface Helper Implementation

Memory manager a

L\ J

sycl::buffer/accessor

Memory API

Legend

- Helper header library component

A—™B AusesB

|:| SYCL/oneAPI component

singleton

Device manager b
singleton

Y

Device API sycl::device/queue

sycl::image/accessor/
sampler

Image wrappers

_ L
L
_ --
[+
.
- L
L-

Image API

i > I::atomi f - -
Atomics AFL Sycl-atomic_re a. Maps host virtual pointers
and SYCL buffers
Math API »  sycl:: math functions b. Manages all SYCL capable
devices available on the
oneDPL extensions _ system

oneapi::dpl:: functions

oneDPL Extensions

implementation

c. Address semantic
differences

oneapi::mkl:: functions

Y

BLAS Wrappers




Migrating VectorAdd Example

> global  voild VectorAddKernel(float* A, float* B, float* C) void VectorAddKernel(float* A, float* B, float* C, sycl::nd_item<3i »

SYCL" Code

»fiinclude <CL/sycl.hpp>
#include <dpct/dpct.hpp>
#idefine VECTOR_SIZE 256

#define VECTOR_SIZE 256

sitem_ctl)

{
{
|| A[item_ctl.get_local_id(2)] = item_ctl.get_local_id(2) + 1.0f;
B[item_ctl.get_local_i1d(2)] = item_ctl.get_local _id(2) + 1.0f;
}
N

C[item_ctl.get_local_1d(2)]
A[item_ctl.get local id(2)] + B[item_ctl.get local _id(2)];
}

int main()
{

int main() dpct::device_ext &dev _ctl = dpct::get_current_device();
sycl::queue &q ctl = dev_ctl.default_queue();
float *d_A, *d B, *d C; float *d_A, *d B, *d _C;

d_A
d_B
d_C

sycl::malloc_device<float>(VECTOR_SIZE, q_ctl);
sycl::malloc_device<float>(VECTOR_SIZE, q_ctl);
sycl::malloc_device<float>(VECTOR_SIZE, q_ctl);

*Other names and brands may be claimed as the property of others.




Migrating VectorAdd Example (2)

float Result[VECTOR_SIZE] = { };

for (int 1 = 0; 1 < VECTOR_SIZE; i++) {
if (1% 16 ==0) {
printf("\n");

}
printf("%f ", Result[i]); s
}

return 0;

*Other names and brands may be claimed as the property of others.

SYCL" Code

q_ctl.submit([&](sycl::handler &cgh) { @
cgh.parallel_for(svcl::nd_range<3>(
sycl::range<3>(1, 1, VECTOR_SIZE),
sycl::range<3>(1, 1, VECTOR_SIZE)),
[=]1(sycl::nd_item<3> item ctl) {
VectorAddKernel(d A, d B, d_C, item ctl);
s
s

float Result[VECTOR_SIZE] = { };
q_ctl.memcpy(Result, d_C, VECTOR_SIZE * sizeof(float)).wait();

sycl::free(d_A, q_ctl);

sycl::free(d_B, q_ctl); @
sycl::free(d_C, q_ctl);

for (int 1 = ©; 1 < VECTOR_SIZE; i++) {

if (1% 16 ==0) {
printf("\n");

}
printf("%f ", Result[i]); a
}

return 0;

aa—.
intel.



Migration Rule Example

« Sample code

« Inputcode: cudaMalloc( &d_A, vector_size * sizeof( float) )
« Outputcode: d_A =sycl:malloc_device<float>(vector_size, dpct: get_default_queue()),

o AST tree

| -CallExpr «<line:12:3, col:51> ‘cudaError_t':'cudaError’

| |-ImplicitCastExpr <col:3> 'cudaError_t (*)(float **, size t)' <FunctionToPointerDecay>

| | ~-DeclRefExpr <col:3> 'cudaError_t (float **, size t)' lvalue Function 0x56439167c5a8 'cudaMalloc' 'cudaError_t (float **, size t)
| |-UnaryOperator <col:15, col:16> 'float **' prefix '&" cannot overflow

| | ~-DeclRefExpr <col:16> 'float *' lvalue Var @x564391659b98 'd A' 'float *'

| ~-BinaryOperator <col:21, col:49> 'unsigned long' '*'

| | -ImplicitCastExpr <col:21> 'unsigned long' <IntegralCast>

| | ~-ImplicitCastExpr <col:21> '"int' <LValueToRValue>

| | " -DeclRefExpr <col:21> 'const int' lvalue Var ©x564391659940 'vector _size' 'const int' non_odr_use constant

| " -UnaryExprOrTypeTraitExpr <col:35, co0l:49> 'unsigned long' sizeof 'float’

« AST Matcher
« callExpr(allOf(callee(functionDecl(hasAnyName(“cudaMalloc”) ...).bind("callExpr")

o AST Matcher Action

« Visitthe callExpr node, analyze the parameters of the cudaMalloc, and generate migration result

*Other names and brands may be claimed as the property of others.




User Defined Migration Rule

* Provides a way to extent the migration capability by defining migration rule in Yaml
file

» Example: Rule “rule_forceinline” is used to quide the migration of macro
”_forceinline__"

- Rule: rule_forceinline # [Required] The unique name of the rule
Kind: Macro # [Required] The kind of the rule [Macro [API]
Priority: Takeover # [Required] The priority of the rule [Takeover | Default |Fallback]
In: __ forceinline__ # [Required] The target macro name in the input source code
Out: inline # [Required] The migrated name of the macro in output source code
Includes: ["header1.h"] # [Required] A list of header file name which the new macro depends on, can be an empty list

» User defined migration rule target to cover migration of API, Datatype, Class,
ENUM type, Macro, Include, Specifier/Qualifier/Attribute

= Part of feature will be available in next Intel one APl release




Summary / Call-to-Action

» Both Intel® DPC++ Compatibility Tooland SYCLomatic assist in migrating your
existing CUDA" code to SYCL" code which can run on any platform that has SYCL

compiler support

* Intel® DPC++ Compatibility Tool is the Intel product version of SYCLomatic

» SYCLomatic will open source in coming weeks

= Tryit
» Intel® DPC++ Compatibility Tool in Intel® one APl Base Toolkit - Free:
coming soon

*Other names and brands may be claimed as the property of others.


https://github.com/oneapi-src/SYCLomatic

More Resources

 SYCLomatic Project on GitHub: GetStartedGuide.md, Contributing.md guide
(coming soon)

» Get started developing
= Book: Mastering Programming of Heterogeneous Systems using C++ & SYCL
» Essentials of SYCL training
* The oneAPl samples on Github

» oneAPI| specification and SYCL specification

= Intel® DevCloud - A free environment to access Intel® one API Tools and develop
and test code across a variety of Intel® architectures (CPU, GPU, FPGA)

» CodeProject: Using one APl to convert CUDA codeto SYCL

*Other names and brands may be claimed as the property of others.


https://github.com/oneapi-src/SYCLomatic
https://github.com/oneapi-src/SYCLomatic/blob/main/GetStartedGuide.md
https://github.com/oneapi-src/SYCLomatic/blob/main/CONTRIBUTING.md
https://protect-eu.mimecast.com/s/P9FyCjvlRipPPWgT5ya8e?domain=link.springer.com
https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/dpc-essentials.html
https://github.com/oneapi-src/oneAPI-samples
https://spec.oneapi.io/releases/index.html#id1
https://www.khronos.org/sycl/
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://protect-eu.mimecast.com/s/Whb3C026RU6ZZ1jTwUMjj?domain=codeproject.com




