Optimizing AI Pipelines with OpenVINO™ and SYCL

Nico Galoppo
Principal Engineer – AI Performance
Intel® Internet of Things Group
Modern AI Pipelines

Complex pipelines of multi-modal data-parallel processing

- Autonomous Mobile Robots
- Realtime Traffic Monitoring
Case Study – PointPillars: Object Detection from Point Clouds

A mix of data-parallel compute & NN inference

Optimizing the end-to-end pipeline is crucial!

- Point cloud
- Pillar Feature Net
- NN Inference region proposal network (rpn)
- Backbone (2D CNN)
- Detection Head (SSD)
- OpenVINO™
- DPC scatter
- Post Process
End-to-end Optimization of Mixed Pipelines

- Potential inefficiencies:
 - Unnecessary memory copies
 - Synchronization bubbles: explicit waits on the host application thread
End-to-end Optimization of Mixed Pipelines

- Optimize memory transfer time: avoid unnecessary copies
 - Between host & device on integrated platforms
 - Share device memory between APIs
 - Requires the concept of common “handles” across APIs
End-to-end Optimization of Mixed Pipelines

- Optimize memory transfer time: avoid unnecessary copies
 - Between host & device on integrated platforms
 - Share device memory between APIs
 - Requires the concept of common “handles” across APIs

- Minimize synchronization bubbles
 - Avoid explicit waits on the application thread between different API calls
 - Requires common work queue or the ability to schedule events across APIs
End-to-end Optimization of Mixed Pipelines

- Optimize memory transfer time: avoid unnecessary copies
 - Between host & device on integrated platforms
 - Share device memory between APIs
 - Requires the concept of common “handles” across APIs

- Minimize synchronization bubbles
 - Avoid explicit waits on the application thread between different API calls
 - Requires common work queue or the ability to schedule events across APIs

Solution: allow the APIs to “talk” to each other, AKA “interoperability”.

![Diagram showing the flow of data and APIs, including device memory, host memory, application thread, SYCL processing, DL inference, and intermediate results.](Image)
API Overview

- **SYCL 2020:**
 - Supports many backends, including OpenCL, Level Zero
 - Expanded interoperability
 - Unified Shared Memory (USM) – common memory handles!

- **OpenVINO™:** open-source deep learning toolkit & inference runtime
 - Supports multiple device types with plugin design
 - Plugins can support multiple backends, e.g. GPU plugin supports OpenCL & Level Zero backends and USM
 - DL inference scheduled through asynchronous inference requests
Our Optimization Tools: Interoperability APIs

SYCL Interop APIs with supported backends (incl. OpenCL)

```
template<backend Backend, class T>
backend_return_t<Backend, T> get_native(const T &syclObject);
```

```
template<backend Backend>
queue make_queue(const backend_input_t<Backend, queue> &backendObject,
                 const context &targetContext,
                 const async_handler asyncHandler = {});
```
Our Optimization Tools: Interoperability APIs

OpenVINO™ Interop APIs (currently with OpenCL & VA-API)

- RemoteContext: wraps native backend context
 - Create from native handle or get from OpenVINO™ runtime plugin
    ```
    cl_context ctx = get_cl_context();
    ov::intel_gpu::ocl::ClContext gpu_context(core, ctx);
    ```

- RemoteTensor: wraps native backend memory handles
 - Create from native handle or allocation by OpenVINO™ runtime plugin
 - Native handle types include USM pointers, cl_mem, cl::Buffer/cl::Image2D
 - Inherits from ov::Tensor – can be used with all standard OpenVINO™ inference request APIs
    ```
    void* shared_buffer = allocate_usm_buffer(input_size);
    auto remote_tensor = gpu_context.create_tensor(in_element_type, in_shape, shared_buffer);
    ```

USM pointers are supported by OpenVINO™ and SYCL!
A Recipe for OpenVINO™ SYCL Interoperability

Basic principle: use a common backend! Here we’ll use OpenCL as the backend. Enforce backend with SYCLDEVICEFILTER.
A Recipe for OpenVINO™ SYCL Interoperability

Create
Create a RemoteContext from SYCL queue.

Compile
Compile an OpenVINO™ DL model using the RemoteContext.

Allocate
Allocate USM memory (device or shared).

Create
Wrap all DL in/output USM in RemoteTensor objects.

Assign
Assign RemoteTensors as inference in/outputs.

Sync
Move host thread synchronization to device side synchronization.

```java
ov::Core core;
cl_command_queue q = 
| sycl::get_native<sycl::backend::opencl>(sycl_queue);
ov::RemoteContext remote_context =
| ov::intel_gpu::oclClContext(core, q);

auto compiled_network = core.compile_model(model, remote_context);

float * dev_input = sycl::malloc_device<float>(size, sycl_queue);

ov::RemoteTensor input_tensor =
| remote_context.create_tensor(element_type, shape, dev_input);

float * dev_output = sycl::malloc_device<float>(size, sycl_queue);

ov::RemoteTensor output_tensor =
| remote_context.create_tensor(element_type, shape, dev_output);

auto infer_request = compiled_network.create_infer_request();
infer_request.set_input_tensor(0, input_tensor);
infer_request.set_tensor(output_name, output_tensor);

// ... generate input tensor with SYCL kernel...
infer_request.start_async();
clEnqueueBarrierWithWaitList(q, 0, nullptr, nullptr);

// ... more processing with SYCL...
```
Putting Theory into Practice – PointPillars Optimization

Optimize transition between each stage:
1. Share SYCL output memory with inference input → remove memory copies
2. Share inference output memory as SYCL input → remove memory copies
3. Remove waits on the application thread → increase device utilization

Code: PointPillars OneAPI Sample
Deep Dive – Before Optimization

- **PFE Inference**: Copy buffer
 - Explicit wait after PFE inference
 - Zero input buffer
- **Scatter**
 - Copy scatter output buffer to RPN inference input
 - Explicit wait after scatter
- **RPN Inference**: Copy buffer

- **GPU utilization**
- **Device-side Work**
- **~ 5 ms**

IWOCL & SYCLCon 2022
Internet of Things Group
Step 1: Share Scatter Output with RPN Inference

Before

```cpp
auto rpn_exe_network = core.compile_model(model);
// ...
DoScatter(dev_pfe_output, dev_scatter_output);
// A Tensor is a host-side representation of the memory, implies
// map/unmap, i.e. copy of host memory to device memory when inference
// request is submitted.
ov::Tensor input_tensor = rpn_infer_request.get_input_tensor(idx);
sycl_queue.memcpy(input_tensor.data(), dev_scatter_output, scatter_output_size);
.wait(); // Explicit wait on the host thread!
```

After

```cpp
// 1. Create RemoteContext
ov::Core core;
cl_command_queue q =
  sycl::get_native<sycl::backend::opencl>(sycl_queue); 
ov::RemoteContext remote_context =
  ov::intel_gpu::ocl::Context(core, q);

// 2. Compile model using RemoteContext
auto rpn_exe_network = core.compile_model(model, remote_context);

// 3. Allocate USM memory
float * dev_scatter_output = sycl::malloc_device<float>(size, sycl_queue); 

// 4. Create RemoteTensors to wrap USM memory
ov::RemoteTensor scatter_output_tensor =
  remote_context.create_tensor(element_type, shape, dev_scatter_output);
// ...
DoScatter(dev_pfe_output, dev_scatter_output);
// 5. Assign RemoteTensors to inference input
rpn_infer_request.set_input_tensor(idx, scatter_output_tensor);

rpn_infer_request.start_async();
rpn_infer_request.wait();
```

IWOCL & SYCLCon 2022
Before Optimization

Explicit wait after PFE inference

Explicit wait after scatter

GPU idle

~ 5 ms
Step 1: Share Scatter Output with RPN Inference

Explicit wait after PFE inference

Explicit wait after scatter

GPU idle

~5 ms -> 2.2 ms

Removed memory copy, 2.8 ms savings!
Step 2: Share PFE Output with Scatter Input

Before

```c
ov::Tensor output_tensor = pfe_infer_request_.get_tensor(output_name);
| .wait(); // Explicit wait on the host thread!

pfe_infer_request.start_async();
pfe_infer_request.wait();

sycl_queue.memcpy(dev_pfe_output, output_tensor.data(), size)

DoScatter(dev_pfe_output, dev_scatter_output);
```

After

```c
// 4. Create RemoteTensors to wrap USM memory
ov::RemoteTensor pfe_output_tensor = 
| remote_context.create_tensor(element_type, shape, dev_pfe_output);

// 5. Assign RemoteTensors to inference output
pfe_infer_request.set_tensor(name, pfe_output_tensor);

pfe_infer_request.start_async();
pfe_infer_request.wait();

DoScatter(dev_pfe_output, dev_scatter_output);
```
Step 2: Share PFE Output with Scatter Input

Before Optimization

Explicit wait after PFE inference

Explicit wait after scatter

GPU idle

~5 ms -> 2.2 ms
Step 2: Share PFE Output with Scatter Input

- Explicit wait after PFE inference
- Explicit wait after scatter
- GPU idle

Removed 2nd memory copy, +0.15 ms savings!
Step 3: Remove Waits on the Application Thread

SYCL & OpenVINO™ runtime are using the same OpenCL command queue under the hood. Replace host thread waits with device side barriers on the shared queue between API calls (using OpenCL API).

Before

```c
ocl_command_queue q = sycl::get_native<sycl::backend::opencl>(sycl_queue);

pfe_infer_request.set_tensor(name, pfe_output_tensor);
pfe_infer_request.start_async();
pfe_infer_request.wait();
DoScatter(dev_pfe_output, dev_scatter_output);
sycl_queue.wait();

scatter_output_tensor = remote_context.create_tensor(element_type, shape, dev_scatter_output);
rpn_infer_request.set_input_tensor(idx, scatter_output_tensor);
rpn_infer_request.start_async();
```

After

```c
ocl_command_queue q = sycl::get_native<sycl::backend::opencl>(sycl_queue);

pfe_infer_request.set_tensor(name, pfe_output_tensor);
pfe_infer_request.start_async();

clEnqueueBarrierWithWaitList(q, 0, nullptr, nullptr);
DoScatter(dev_pfe_output, dev_scatter_output);

scatter_output_tensor = remote_context.create_tensor(element_type, shape, dev_scatter_output);
rpn_infer_request.set_input_tensor(idx, scatter_output_tensor);
rpn_infer_request.start_async();
```
Step 3: Remove Waits on the Application Thread

Before Optimization

- Explicit wait after PFE inference
- Explicit wait after scatter
- GPU idle

~5 ms → 2.2 ms → 2.05 ms
Step 3: Remove Waits on the Application Thread

Enqueue calls moved way back there

100% GPU utilization
Overall gains: 5 ms → 1.5 ms

~ 5 ms → 2.2 ms → 2.0 ms → 1.5 ms
OpenVINO™ Interoperability API Implementation Details

- Abstract base classes: RemoteContext & RemoteTensor
 - Interface can be implemented by any Inference Engine plugins, using any compute backend.
 - Currently OpenCL Buffer/Image2D and USM tensors implemented by the GPU plugin

- Context & Queue sharing
 - Allows for pipeline scheduling on app side and avoid blocking of host thread on waiting for completion of inference

- Limitations
 - Queue sharing cannot be combined with multiple concurrent queue optimizations in OpenVINO™.
 - No event/synchronization/dependencies mechanism. Application needs to manage the shared native backend queue manually.
Proposal: Synchronization Interop

- Could add direct support for SYCL event type
 - Not very flexible since the inference plugin would have to support SYCL
- Instead, follow RemoteContext/RemoteTensor pattern: RemoteEvent
 - Inference plugin only needs to support the the shared backend API

```cpp
class RemoteEvent {
  // ...
  void wait();
  // ...
};

class InferRequest {
  // ...
  RemoteEvent start_async(std::vector<RemoteEvent>& dependencies);
};

DoScatter(...);
clEnqueueBarrierWithWaitList(q, 0, nullptr, nullptr);
infer_request.start_async();
clEnqueueBarrierWithWaitList(q, 0, nullptr, nullptr);

sycl::event e = DoScatter(...);
cl_event scatter_event = sycl::get_native<sycl::backend::opencl>(e);
ov::RemoteEvent dep = remote_context.create_event(event);

ov::RemoteEvent e = infer_request.start_async({dep});
```
Call to Action: Add Interoperability with SYCL to your API

- Lean on a common compute “backend” (OpenCL, Level Zero, ...).
- Learn from OpenVINO™ Interoperability API.
 - Abstract context/memory/sync objects.
 - Implement derived instances for each supported backend.
- This approach provides maximum flexibility.
 - Your API does not need to “speak” SYCL, only the common backend API.
 - Naturally extends to interop with programming APIs beyond SYCL.
Thank you!
nico.galoppo@intel.com – Twitter: @ngaloppo
Call to Action

- OpenVINO™ Remote Tensor API documentation
- Examples of Interoperability in other APIs
 - oneDNN / SYCL interoperability
 - Kernel and API interoperability with OpenCL* and SYCL* technology
- Optimizations will be available on GitHub
 - PointPillars OneAPI Sample