
11

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Toward Evaluating High-Level Synthesis 
Portability and Performance Between 
Intel and Xilinx FPGAs

Anthony Cabrera1, Aaron Young1, Jacob Lambert2, 
Zhili Xiao3, Amy An3, Seyong Lee1, Zheming Jin1, 
Jungwon Kim1, Jeremy Buhler3, Roger Chamberlain3, 
Jeffrey Vetter1

1Oak Ridge National Laboratory 2University of Oregon 3Washington University in St. Louis

IWOCL/SYCLcon 2021



22

FPGAs Are Gaining Traction as Moore’s Law Wanes



33

Making FPGAs More Programmable through
High Level Synthesis (HLS)

User-Defined &
Vendor-Specific 
RTL Description

FPGA 
Bitstream

Vendor-Provided Toolchain

Traditional Path to 
FPGA Bitstream



44

Making FPGAs More Programmable through
High Level Synthesis (HLS)

Auto-
generated

RTL

FPGA 
Bitstream

Vendor-Provided Toolchain
User-Defined 

OpenCL 
HW Design 

Vendor-Provided “Hardware Compiler”

Using HLS to Generate 
FPGA Bitstream



55

Making FPGAs More Programmable through
High Level Synthesis (HLS)

Auto-
generated

RTL

FPGA 
Bitstream

Vendor-Provided Toolchain
User-Defined 

OpenCL 
HW Design 

Vendor-Provided “Hardware Compiler”

Using HLS to Generate 
FPGA Bitstream

Intel and Xilinx support OpenCL C for designing hardware, 
but…



66

How portable and performant are 
HLS designs between 

Intel and Xilinx FPGAs?



77

Our contribution:

• Detailing our port of a subset of FPGA kernel optimizations from an Intel 
OpenCL to a Xilinx OpenCL specification

• Evaluating OpenCL kernel portability and performance from the ported 
hardware kernels

• Presenting our experience of using Xilinx Vitis Tools with OpenCL C kernels

• Contributing to the sparse literature of using OpenCL C for Xilinx platforms

How portable and performant are 
HLS designs between 

Intel and Xilinx FPGAs?



88

Our contribution:

• Detailing our port of a subset of FPGA kernel optimizations from an Intel 
OpenCL to a Xilinx OpenCL specification

• Evaluating OpenCL kernel portability and performance from the ported 
hardware kernels

• Presenting our experience of using Xilinx Vitis Tools with OpenCL C kernels

• Contributing to the sparse literature of using OpenCL C for Xilinx platforms

How portable and performant are 
HLS designs between 

Intel and Xilinx FPGAs?



99

Our Porting Approach

• Isolate kernels to port

• Modifications to Host Code

• Porting Intel OpenCL FPGA Optimizations to the Xilinx Platform

Porting from Intel to Xilinx OpenCL C



1010

Kernel Selection

•We use a subset of the Intel 
OpenCL FPGA 
implementations† of the 
Rodinia Benchmark Suite*

•We port two versions of each 
kernel: the baseline and best
versions of each kernel

† Zohouri et al. “Evaluating and Optimizing OpenCL Kernels for High Performance Computing with FPGAs” SC ‘16
* Che et al., “Rodinia: A Benchmark Suite for Heterogeneous Computing” IISWC ‘09

Porting from Intel to Xilinx OpenCL C

Ported Applications

Pathfinder

Computational Fluid Dynamics 

(CFD)

Speckle-reducing Anisotropic 

Diffusion (SRAD)

HotSpot



1111

Our Porting Approach

• Isolate kernels to port

• Modifications to Host Code

• Porting Intel FPGA OpenCL Optimizations to the Xilinx Platform

Porting from Intel to Xilinx OpenCL C



1212

Host-Side Code

• The host-side code is responsible for setting for setting and 
managing the OpenCL runtime resources

• Not much structural difference between prior host code and 
our work

• We do attempt to better organize the code and make the 
code less error prone by using C++ features

Porting from Intel to Xilinx OpenCL C



1313

Our Porting Approach

• Isolate kernels to port

• Modifications to Host Code

• Porting Intel FPGA OpenCL Optimizations to the Xilinx Platform

Porting from Intel to Xilinx OpenCL C



1414

Porting the Baseline Kernels

• All baseline kernels are implemented using the Single Work Item 
(SWI) execution model

• The baseline kernel versions for each application do not 
include any FPGA optimizations

Porting from Intel to Xilinx OpenCL C



1515

Porting the Best Kernels

• Porting Goal: perform the minimum amount of effort possible to 
port an optimization from Intel to Xilinx

• Optimization porting difficulty varies

Porting from Intel to Xilinx OpenCL C



1616

Porting FPGA Optimizations: Loop Unrolling

Intel

#define U_FACTOR 8

#pragma unroll U_FACTOR

unsigned int i;

for (i = 0; i < N; ++i)

{

//do some work

}

Xilinx

#define U_FACTOR 8

__attribute__((

opencl_unroll_hint(U_FACTOR)

))

unsigned int i;

for (i = 0; i < N; ++i)

{

//do some work

}

Porting from Intel to Xilinx OpenCL C



1717

Porting FPGA Optimizations: Shift Register

Intel

int shift_reg[SR_SIZE];

int i, n;

for (n = 0; n < N; ++n)

{

shift_reg[SR_SIZE-1] = 

input_arr[n];

#pragma unroll SR_SIZE-1

for (i = 0; i < SR_SIZE-1; ++i)

shift_reg[i] = shift_reg[i+1];

}

Porting from Intel to Xilinx OpenCL C

Xilinx

int shift_reg[SR_SIZE];

__attribute__((

xcl_array_partition(complete,0)

))

int i, n;

for (n = 0; n < N; ++n)

{

shift_reg[SR_SIZE-1] = 

input_arr[n];

__attribute__((

opencl_unroll_hint(SR_SIZE-1)

))

for (i = 0; i < SR_SIZE-1; ++i)

shift_reg[i] = shift_reg[i+1];

}



1818

Evaluating Portability and Performance

• Results of the minimum effort ports

• Extracting more performance

Evaluating Portability and Performance



1919

Minimum Effort Port Results
Evaluating Portability and Performance



2020

Minimum Effort Port Results
Evaluating Portability and Performance



2121

Minimum Effort Port Results
Evaluating Portability and Performance



2222

Evaluating Portability and Performance

• Results of the minimum effort ports

• Extracting more performance

Evaluating Portability and Performance



2323

Results of Optimization Exploration



2424

Results of Optimization Exploration

PARTITION_ ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}



2525

Results of Optimization Exploration

SR_ ∈ {128, 256, 512}



2626

Conclusion

• Initial effort toward evaluating portability 
and performance between Intel and 
Xilinx HLS kernels

• Ported Intel FPGA OpenCL 
implementations of the Rodinia Suite to a 
Xilinx perform this evaluation

• Varying degree of difficulty when porting 
optimizations

• Constructs that are known to perform
well on an FPGA should perform well
regardless of the platform, but may need
non-trivial work to see good
performance



2727

Conclusion Future Work

• Initial effort toward evaluating portability 
and performance between Intel and 
Xilinx HLS kernels

• Ported Intel FPGA OpenCL 
implementations of the Rodinia Suite to a 
Xilinx perform this evaluation

• Varying degree of difficulty when porting 
optimizations

• Constructs that are known to perform 
well on an FPGA should perform well 
regardless of the platform, but may need 
non-trivial work to see good 
performance

• Port more of the Rodinia applications to 
the Xilinx platform

• Explore the wider range of control
afforded to the kernel designer by using 
C/C++ instead of OpenCL C

• Use lessons learned to automatically
generate performant Xilinx HLS kernels

Contact: cabreraam AT ornl DOT gov


