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FPGAs Are Gaining Traction as Moore’s Law Wanes
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Intel and Xilinx support OpenCL C for designing hardware, 
but…
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How portable and performant are 
HLS designs between 

Intel and Xilinx FPGAs?
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Our contribution:

• Detailing our port of a subset of FPGA kernel optimizations from an Intel 
OpenCL to a Xilinx OpenCL specification

• Evaluating OpenCL kernel portability and performance from the ported 
hardware kernels

• Presenting our experience of using Xilinx Vitis Tools with OpenCL C kernels

• Contributing to the sparse literature of using OpenCL C for Xilinx platforms

How portable and performant are 
HLS designs between 

Intel and Xilinx FPGAs?
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Our Porting Approach

• Isolate kernels to port

• Modifications to Host Code

• Porting Intel OpenCL FPGA Optimizations to the Xilinx Platform

Porting from Intel to Xilinx OpenCL C
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Kernel Selection

•We use a subset of the Intel 
OpenCL FPGA 
implementations† of the 
Rodinia Benchmark Suite*

•We port two versions of each 
kernel: the baseline and best
versions of each kernel

† Zohouri et al. “Evaluating and Optimizing OpenCL Kernels for High Performance Computing with FPGAs” SC ‘16
* Che et al., “Rodinia: A Benchmark Suite for Heterogeneous Computing” IISWC ‘09

Porting from Intel to Xilinx OpenCL C

Ported Applications

Pathfinder

Computational Fluid Dynamics 

(CFD)

Speckle-reducing Anisotropic 

Diffusion (SRAD)

HotSpot
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Our Porting Approach

• Isolate kernels to port

• Modifications to Host Code

• Porting Intel FPGA OpenCL Optimizations to the Xilinx Platform

Porting from Intel to Xilinx OpenCL C
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Host-Side Code

• The host-side code is responsible for setting for setting and 
managing the OpenCL runtime resources

• Not much structural difference between prior host code and 
our work

• We do attempt to better organize the code and make the 
code less error prone by using C++ features

Porting from Intel to Xilinx OpenCL C
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Porting the Baseline Kernels

• All baseline kernels are implemented using the Single Work Item 
(SWI) execution model

• The baseline kernel versions for each application do not 
include any FPGA optimizations

Porting from Intel to Xilinx OpenCL C
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Porting the Best Kernels

• Porting Goal: perform the minimum amount of effort possible to 
port an optimization from Intel to Xilinx

• Optimization porting difficulty varies

Porting from Intel to Xilinx OpenCL C
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Porting FPGA Optimizations: Loop Unrolling

Intel

#define U_FACTOR 8

#pragma unroll U_FACTOR

unsigned int i;

for (i = 0; i < N; ++i)

{

//do some work

}

Xilinx

#define U_FACTOR 8

__attribute__((

opencl_unroll_hint(U_FACTOR)

))

unsigned int i;

for (i = 0; i < N; ++i)

{

//do some work

}

Porting from Intel to Xilinx OpenCL C



1717

Porting FPGA Optimizations: Shift Register

Intel

int shift_reg[SR_SIZE];

int i, n;

for (n = 0; n < N; ++n)

{

shift_reg[SR_SIZE-1] = 

input_arr[n];

#pragma unroll SR_SIZE-1

for (i = 0; i < SR_SIZE-1; ++i)

shift_reg[i] = shift_reg[i+1];

}

Porting from Intel to Xilinx OpenCL C

Xilinx

int shift_reg[SR_SIZE];

__attribute__((

xcl_array_partition(complete,0)

))

int i, n;

for (n = 0; n < N; ++n)

{

shift_reg[SR_SIZE-1] = 

input_arr[n];

__attribute__((

opencl_unroll_hint(SR_SIZE-1)

))

for (i = 0; i < SR_SIZE-1; ++i)

shift_reg[i] = shift_reg[i+1];

}



1818

Evaluating Portability and Performance

• Results of the minimum effort ports

• Extracting more performance

Evaluating Portability and Performance
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Minimum Effort Port Results
Evaluating Portability and Performance
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Minimum Effort Port Results
Evaluating Portability and Performance
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Evaluating Portability and Performance
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Results of Optimization Exploration
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Results of Optimization Exploration

PARTITION_ ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}
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Results of Optimization Exploration

SR_ ∈ {128, 256, 512}
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Conclusion

• Initial effort toward evaluating portability 
and performance between Intel and 
Xilinx HLS kernels

• Ported Intel FPGA OpenCL 
implementations of the Rodinia Suite to a 
Xilinx perform this evaluation

• Varying degree of difficulty when porting 
optimizations

• Constructs that are known to perform
well on an FPGA should perform well
regardless of the platform, but may need
non-trivial work to see good
performance
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Conclusion Future Work

• Initial effort toward evaluating portability 
and performance between Intel and 
Xilinx HLS kernels

• Ported Intel FPGA OpenCL 
implementations of the Rodinia Suite to a 
Xilinx perform this evaluation

• Varying degree of difficulty when porting 
optimizations

• Constructs that are known to perform 
well on an FPGA should perform well 
regardless of the platform, but may need 
non-trivial work to see good 
performance

• Port more of the Rodinia applications to 
the Xilinx platform

• Explore the wider range of control
afforded to the kernel designer by using 
C/C++ instead of OpenCL C

• Use lessons learned to automatically
generate performant Xilinx HLS kernels

Contact: cabreraam AT ornl DOT gov


