
IWOCL & SYCLcon 2022, May 10-12

Experiences Porting NAMD  
to the Data Parallel C++

Programming Model
David J. Hardy

University Of Illinois at Urbana-Champaign
Beckman Institute of Advanced Science and Technology

Jaemin Choi
University of Illinois at Urbana-Champaign

Department of Computer Science

1

Wei Jiang
Argonne National Laboratory

Argonne Leadership Computing Facility

Emad Tajkhorshid
University of Illinois at Urbana-Champaign

Beckman Institute of Advanced Science and Technology

IWOCL & SYCLcon 2022, May 10-12

Molecular Dynamics Combats
Diseases Like COVID-19

• Molecular dynamics (MD) simulation software and HPC
resources provide access to spatial and temporal scales
not available to physical experiments

• Atomistic dynamics can reveal the molecular basis for
diseases

• By studying viruses and other diseases with MD and
related methods, researchers can inform the development
of new treatments and therapies

2

Delta variant of coronavirus (SARS-CoV-2) in aerosol droplet.
Credit: A. Dommer, L. Casalino, F. Kearns, R. Amaro (UCSD).
Simulations (1B atoms) with NAMD, renderings with VMD.

IWOCL & SYCLcon 2022, May 10-12

NAMD Multi-GPU Scaling on DGX-A100

4

Simulation details:

8Å cutoff, NVT, MTS 2fs, 4fs PME, rigid bonds

https://www.ks.uiuc.edu/Research/namd/benchmarks/

Replication Transcription Complex

ALCF ThetaGPU:

 DGX-A100

TACC Frontera

Team Intelligent Resolution — SC21 Gordon Bell COVID-19 Special Prize Finalist

47 ns/day

https://www.ks.uiuc.edu/Research/namd/benchmarks/

IWOCL & SYCLcon 2022, May 10-12

NAMD: Scalable Molecular Dynamics

5

• 25-year-old molecular dynamics
application written in C++ with
Charm++ parallel objects

• Simulate movements of
biomolecules over time

• Emphasize parallel scaling of
large systems

• Over 25,000 registered users, 
over 16,000 citations

Investigations of coronavirus (SARS-CoV-2) spike dynamics.
Credit: Tianle Chen, Karanpal Kapoor, Emad Tajkhorshid (UIUC).
Simulations with NAMD, movie created with VMD.

https://www.ks.uiuc.edu/Research/namd/ 
Phillips, et al. J. Comput. Chem. 26, 1781-1802 (2005)
Phillips, et al. J. Chem. Phys. 153, 044130 (2020)

https://www.ks.uiuc.edu/Research/namd/

IWOCL & SYCLcon 2022, May 10-12 6

Molecular Dynamics Simulation
Integrate Newton’s equations of motion:

Most computationally intensive part

Integrate for millions of time steps

IWOCL & SYCLcon 2022, May 10-12

Parallelism for MD Simulation Limited to Each Time Step

7

Computational workflow of MD:

initialize particle

positions

particle

forces

force

calculation

about 99% of
computational work

update

 positions

about 1% of
computational work

reduced quantities (energy, temperature, pressure)
position coordinates (trajectory snapshot)

occasional

output

aLoop millions
of time steps

IWOCL & SYCLcon 2022, May 10-12

NAMD Also Parallelizes Interaction Space

• Decompose atoms into equal volume patches

• Calculate pairwise forces between atoms, treat as
interactions between neighboring patches

• Decompose patch-patch interaction compute objects

• Moving atoms: update spatial decomposition by
migrating atoms between adjacent patches

• Load balancing: update work decomposition by
migrating compute objects to keep processors
consistently occupied

8

Spatial decomposition of
atoms into patches

Work decomposition of
patch-patch interactions

into migratable compute objects

IWOCL & SYCLcon 2022, May 10-12

NAMD Parallel Workflow Incorporates GPUs

9

Charge spreading

Force interpolation

Offload force compute to GPU

Must aggregate positions

Patches

Patches

Compute forces
for next time step

IWOCL & SYCLcon 2022, May 10-12

Original GPU-Offload Scheme

Partition work between CPU and GPU

10

force
calculation
on GPUs

update
coordinates

on CPUs

Short-range non-bonded forces (90%)

Long-range PME electrostatics (5%)

Bonded forces (2%)

Corrections for excluded interactions (2%)

Integrator, rigid bond constraints (1%)
Enhanced sampling methods: additional forces, grid potentials, collective variables

Showing approximate percentage of total work per step:

IWOCL & SYCLcon 2022, May 10-12

Original GPU-Offload Scheme

CPU-bound on Volta and beyond

• GPUs had become much faster!

• Attempt to overlap CPU and GPU
causes performance bottleneck

• Unable to fully utilize GPU with
offload approach

11

Forces

Integration

Forces

Integration

Profile using Nsight Systems with NVTX tags to trace
execution of CPU kernels:

IWOCL & SYCLcon 2022, May 10-12

New GPU-Resident Scheme

Move integrator to GPU and maintain data between time steps

12

Calculate forces

Integrate atom
positions

Aggregate
position data,
copy to GPU

Integrate atom
positions

Calculate forces

Aggregate
position data,
copy to GPU

Stream
forces back

to CPU

CPU

GPU

GPU-offload

CPU

GPU

Integrate atom
positions

Calculate forces

Fill position
buffers

Fetch force
buffers

Convert force
to SOA form

Integrate atom
positions

Calculate forces

Fill position
buffers

Fetch force
buffers

Convert force
to SOA form

Integrate atom
positions

GPU-resident
(manages GPU kernels)

IWOCL & SYCLcon 2022, May 10-12

New GPU-Resident Scheme

Profiling shows new scheme fully utilizes GPU, no more CPU bottleneck

13

Forces
Integration

Forces
Integration

Forces

Integration

Forces

Integration

Before (GPU-offload):

After (GPU-resident):

IWOCL & SYCLcon 2022, May 10-12

New GPU-Resident Scheme

Performance for constant energy (NVE) simulation on single GPU (Aug 2020)

14

0

100

200

300

400

JAC (23K atoms) ApoA1 (92K) F1 ATPase (300K) STMV (1M)

11.5
43.1

161.1

331.7

5.920.0
61.9

185.4

GPU-offload GPU-resident

ns/day

Intel Xeon Gold
6134 @ 3.2 GHz

NVIDIA A100-PCIe

Simulation details:
NVE, CHARMM force field, cutoff distance 12Å,
MTS with 2fs time step and 4fs PME, rigid bond constraints.
Performance tuning parameter “margin” set to 4Å.
https://www.ks.uiuc.edu/Research/namd/benchmarks/

https://www.ks.uiuc.edu/Research/namd/benchmarks/

IWOCL & SYCLcon 2022, May 10-12

Why is NAMD adopting SYCL / DPC++?

• Support upcoming exascale computers: ANL Aurora (Intel)

• SYCL / DPC++ provides advantages:

- Modern C++ interface to GPU devices

- Host-side code is much simpler than OpenCL

- Same data structure definitions for both host and device

- Single source and single compiler (DPC++) for host and device code

- Vendor-neutral language and library solution

15

IWOCL & SYCLcon 2022, May 10-12

How does SYCL differ from CUDA?

• Use of modern C++

- Kernels defined as unnamed lambda expressions

- Error-handling with try–catch block

• Design decisions in SYCL and OpenCL

- SYCL work queue is analogous to CUDA stream, but defaults to out-of-order execution

- Must specify accessor functions to enable SYCL kernels to access device buffers

- Permit flexible vector width for performance portability across different hardware

16

IWOCL & SYCLcon 2022, May 10-12

Design decisions for porting NAMD
• Extend NAMD without disrupting current GPU support

- Use preprocessor switches to isolate DPC++ extensions from existing code

• Leverage existing GPU kernels and data structures

- Translate CUDA kernels to DPC++ and copy supporting data structures and kernel
management infrastructure into DPC++ versions

• Add support incrementally, guided by Amdahl's Law, to accelerate most
computationally expensive parts first

- Begin by porting short-range non-bonded force kernels

- Continue with PME and bonded force kernels

17

Mirrors order of original
CUDA development

IWOCL & SYCLcon 2022, May 10-12

NAMD has a LOT of CUDA code
• Eventually develop SYCL support for everything, including GPU-resident version

• Start porting from stable code base with GPU-offload (version 2.14)

18

Component # of C/h files # of cu files # of kernels src line count

Non-bonded force 6 2 20 5.8k

Bonded force 3 1 2 3.9k

PME - single node 6 1 5 4.1k

PME - scalable 6 1 3 3.3k

Utilities 8 1 1 1.7k

Total 29 6 31 18.8k

IWOCL & SYCLcon 2022, May 10-12

Overall porting strategy
• We employed a divide-and-conquer strategy, using preprocessor switches to decouple

components in the CUDA code

- Significantly reduces development and debugging complexity

• Separated components

- Short-range non-bonded force & device utilities

- Bonded force

- PME (Particle-Mesh Ewald) — requires FFT

• Utilized supplemental libraries from oneAPI

- oneDPL for C++17 parallel STL reduce, shuffle, atomic_ref, sort and scan replaces CUB library

- oneMKL FFT replaces cuFFT library

19

IWOCL & SYCLcon 2022, May 10-12

Faster porting with code conversion tool

• Utilized Intel's DPC++ Compatibility Tool for faster development

• Started with converting the CUDA implementation

- Saves > 80% of code porting effort

- For example, threadIdx.x → ndItem.get_local_id(2)

• Provides a good guide to practice DPC++ syntax

20

IWOCL & SYCLcon 2022, May 10-12

Considerations for short-range non-bonded force kernels

• Create new "Dpcpp"-prefixed versions of relevant files

• Rename object classes from "Cuda" to "Dpcpp"

• Change certain fundamental data types, e.g., CUDA float4 to SYCL sycl::float4

• CUDA warp-level intrinsics require SYCL subgroups using reduce, shuffle, atomic_ref

• CUDA texture memory for force parameters and interaction lookup table

- Read values from global memory

- Linear interpolation explicitly performed from lookup table

• Non-bonded kernel calculates in single precision, later summation of virial and potential
energy uses double precision

21

IWOCL & SYCLcon 2022, May 10-12

Considerations for bonded force and PME kernels
• Create new "Dpcpp"-prefixed versions of relevant files

• Rename object classes from "Cuda" to "Dpcpp"

• CUDA implementation maintains bit flag for the five different bonded force types, indicating
GPU or CPU kernels — makes debugging easier

• PME has two GPU-based code paths — single-node and multi-node

• Single-node required extra work to replace cuFFT with oneMKL FFT

- oneMKL FFT does not provide FFTW-compatible interface

- Must account for data buffer strides for real-to-complex forward FFT and pad input grid to SIMD vector length,
output similarly padded for backward FFT

- Avoid modifying surrounding code by introducing additional data buffering kernels

22

IWOCL & SYCLcon 2022, May 10-12

Debugging challenges

• Chasing bugs when porting large applications from CUDA to SYCL
can be involved

- Especially when dealing with large irregular arrays of structures

- Large arrays may be pipelined to multiple kernels, causing code crashes at later
stage when numbers become far from expected value (e.g. NaNs)

- Sometimes we are porting a complex application outside of our domain of
expertise

23

IWOCL & SYCLcon 2022, May 10-12

Create an array debug utility
• Code porting mostly involves changing the syntax and library calls

- Almost all of the algorithms and results remain the same

- Most host-side code remains intact

• Add utility to capture device kernel buffers across languages (CUDA, SYCL)

- Buffers from reference language are written to a file before and after each kernel call

- Read reference data files to compare kernel buffers for development language

• Results for array debug utility

- Provide easy-to-add macros around kernel calls

- Determine earliest code location and element index for difference between device kernel buffers

24

IWOCL & SYCLcon 2022, May 10-12

Validating SYCL port of GPU-offload kernels

• Presently lacking performance results

- Intel GPU performance is not meaningful until we can access Xe-HPC (Ponte Vecchio)

- Codeplay DPC++ compiler does not provide oneDPL or oneMKL FFT libraries

• Determine correctness through short trajectory runs

- Run MD simulation at constant energy

- Long trajectories will diverge due to non-determinism in the order of operation of
parallel calculation and non-associativity of floating point addition

- Compare total energy values with a reference run up to 500 steps

25

IWOCL & SYCLcon 2022, May 10-12

Validating SYCL port of GPU-offload kernels

• Maximum relative error in
total energy for 500-step
constant energy simulation

• CPU-only run shows lower
error due to double
precision compared to
mixed-precision GPU runs

26

architecture ApoA1 (92K atoms) STMV (1M atoms)

CPU-only (2nd run) 4.35841E-08 3.95857E-07

A5000 (CUDA) 3.17476E-06 4.97212E-06

CPU (DPC++) 2.89769E-06 3.29257E-06

Gen9 (DPC++) 2.82174E-06 3.84310E-06

ATS/Xe-HP (DPC++) 2.09291E-06 3.39862E-06

IWOCL & SYCLcon 2022, May 10-12

Future work
• Continue porting efforts with GPU-resident version of NAMD

• Optimize for Intel Xe-HPC (Ponte Vecchio) GPU

- Multi-node runs on Cray Slingshot using GPU-offload version

- Single-node runs using GPU-resident version

• Improve support for mainstream commodity Intel GPUs

- Transform double precision reduction into two single precision values

- Using Kahan summation or compensated summation algorithm to preserve low order bits

• Merge SYCL and CUDA versions into unified GPU code path

27

IWOCL & SYCLcon 2022, May 10-12 28

Acknowledgments
• NAMD GPU development: David Clark (NVIDIA), Julio Maia (AMD), John Stone (UIUC);

past work by Jim Phillips (UIUC), Antti-Pekka Hynninen (ORNL), Peng Wang (NVIDIA)

• SYCL/DPC++ porting: Tareq Malas (Intel), Jaemin Choi (UIUC), Mike Brown (Intel)

• ANL Aurora Early Science Program of the Argonne Leadership Computing Facility

• Intel funding through UIUC oneAPI Center of Excellence

• NIH Grant P41-GM104601

NIH Center for Macromolecular
Modeling and Bioinformatics

Beckman Institute, University of Illinois
at Urbana-Champaign

