
Toward a Better Defined SYCL
Memory Consistency Model

IWOCL & SYCLcon 2021

Presenter: Ben Ashbaugh

Co-Authors: James Brodman, Michael Kinsner, Gregory Lueck, John Pennycook, Roland Schulz

IWOCL 2021 2

Agenda

▪Why does a memory model matter?

▪What was in SYCL 1.2.1?

▪Other Memory Models

• C++

• OpenCL 2.0

• Vulkan

▪What is in SYCL 2020?

▪ Topics for the next SYCL version?

IWOCL 2021 3

Why does a memory model matter?

▪ Your code may not execute exactly as you wrote it!

▪ Possible areas of uncertainty:

• The Compiler may reorder instructions

• The Hardware may execute instructions out-of-order

• There may be Caching effects (e.g. multi-level caches, device-side caches)

▪ A Memory Model is a contract to constrain this uncertainty:

• Guarantees behavior for application developers

• Describes valid and invalid optimizations for implementers

IWOCL 2021 4

Example:

X = 1;

Y = 2;
if (Y == 2) {

// OK?

assert(X == 1);

}

int X = 0, Y = 0;

Thread #1 Thread #2

No

A Memory Model describes how to make this OK!

Better Memory Model A SYCL We Need!
Alternate Title:

IWOCL 2021 6

What was in SYCL 1.2.1?

▪ SYCL 1.2.1 Memory Model derived from OpenCL 1.2

• Can guarantee memory consistency within a work-group with a fence or barrier

• … probably.

// Note: atomic load:

if (Y.load() == 2) {

item.mem_fence();

assert(X == 1); // OK!

}

X = 1;

item.mem_fence();

// Note: atomic store:

Y.store(2);

Work-item 1 Work-item 2 (same work group)

IWOCL 2021 7

What was in SYCL 1.2.1?

▪ SYCL 1.2.1 Memory Model derived from OpenCL 1.2

• Can guarantee memory consistency within a work-group with a fence or barrier

• No memory consistency guarantees across work-groups or kernels!

// Note: atomic load:

if (Y.load() == 2) {

item.mem_fence();

assert(X == 1); // Not OK

}

X = 1;

item.mem_fence();

// Note: atomic store:

Y.store(2);

Work-item 1 Work-item 2 (different work group)

8IWOCL 2021

Other Memory Models
C++11

IWOCL 2021 9

C++11 Memory Model

▪ C++11 defined behavior for multiple threads of execution

• Many concepts directly applicable to SYCL data parallel programming

▪ Key definitions: Memory Location, Conflicting Action, Data Race

▪ Key definitions: Sequenced-Before, Synchronizes-With, Happens-Before

▪ Key definitions: Memory Order:

• Sequential Consistency, Acquire and Release, Relaxed Consistency

▪ Key additions: std::atomic<>, atomic_thread_fence()

IWOCL 2021 10

Example: C++11 Sequentially Consistent Atomics

X = 1;

// Note: Store Sequentially

// Consistent by default in C++:

Y.store(2);

// Note: Load Sequentially

// Consistent by default in C++:

if (Y.load() == 2) {

assert(X == 1); // OK!

}

int X = 0; std::atomic<int> Y(0);

Thread 1 Thread 2

IWOCL 2021 11

What does Sequential Consistency mean?

▪ Informally: There is one modification order, all threads agree what it is.

Y.store(1);X.store(1);

Writer Thread 1: Writer Thread 2:

std::atomic<int> X(0), Y(0);

// note: Y first, then X!

int C = Y.load(); // If 1...

int D = X.load(); // ???

// note: X first, then Y!

int A = X.load(); // If 1...

int B = Y.load(); // If 0...

Reader Thread 1: Reader Thread 2:

Must be 1!

Write to Y happened after write to X!

IWOCL 2021 12

Example: C++11 Acquire-Release Atomics

X = 1;

Y.store(2, memory_order_release);

if (Y.load(memory_order_acquire)

== 2) {

assert(X == 1); // OK!

}

int X = 0; std::atomic<int> Y(0);

Thread #1 Thread #2

IWOCL 2021 13

Difference between Acquire-Release and
Sequential Consistency:
▪ Informally: Acquire-Release orders memory stores within threads, but not

across threads.

Y.store(1, release);X.store(1, release);

Writer Thread 1: Writer Thread 2:

std::atomic<int> X(0), Y(0);

// note: Y first, then X!

int C = Y.load(acquire); // If 1

int D = X.load(acquire); // ???

// note: X first, then Y!

int A = X.load(acquire); // If 1

int B = Y.load(acquire); // If 0

Reader Thread 1: Reader Thread 2:

IWOCL 2021 14

What about Relaxed Consistency?

▪ Relaxed Consistency provide read-modify-write atomicity…

• … but no Happens-Before relation

• Hence no memory consistency guarantees

▪ Still useful, but only in limited cases:

• Reductions, Histograms, Bump Allocators, Counters, Progress Bars

std::atomic<int> counter(0);

counter.fetch_add(1, std::memory_order_relaxed); // x 100

assert(counter == 100);

IWOCL 2021 15

C++11 Memory Model Limitations

▪ Assumption: All memory is visible to all threads

• Not true for SYCL devices (may have device-specific memories)

• Not true for SYCL address spaces (global, local, private)

Still, a good basis for a SYCL memory model.

Important to be compatible with C++ anyhow!

16IWOCL 2021

Other Memory Models
OpenCL 2.0

IWOCL 2021 17

OpenCL 2.0 Memory Model

▪ Based upon C++11/C11

• Reuses: Memory Location, Conflicting Action, Data Race, Memory Orders

• Reuses: Sequenced-Before, Synchronizes-With, Happens-Before

▪ Key addition: Memory Scope

• Work-group, Entire Device, All Devices

• Constrains memory consistency to improve performance

▪ Key addition: Memory Flags

• Global or Local (or both)

• Constrains memory spaces to improve performance

IWOCL 2021 18

OpenCL 2.0 Memory Model Examples

// An acquire-release operation for all work-items in the work-group:

atomic_fetch_add_explicit(pointer_to_atomic_value, operand,

memory_order_acq_rel, memory_scope_work_group);

// A sequentially consistent operation for all work-items on all SVM devices:

atomic_fetch_add_explicit(pointer_to_atomic_value, operand,

memory_order_seq_cst, memory_scope_all_svm_devices);

// A release fence for global memory and local memory, for all work-items in

// the work-group:

atomic_work_item_fence(CLK_GLOBAL_MEM_FENCE | CLK_LOCAL_MEM_FENCE,

memory_order_release, memory_scope_work_group);

IWOCL 2021 19

OpenCL 2.0 Memory Model Limitations

▪ Cumbersome to use:

• Added atomic types: atomic_int, atomic_float, etc.

• Doesn’t (easily) support mixed atomic and non-atomic access

▪ Separate Happens-Before relations adds significant complexity!

• A flag in one address space cannot enforce consistency in another address space!

• Generic address space adds even more complexity

Refer to: Overhauling SC Atomics in C11 and OpenCL (Batty et al.)

IWOCL 2021 20

Implications of Separate Happens-Before:

// Note: global memory:

*x = 1;

// Note: local memory:

atomic_store_explicit(y, 2,

memory_order_release);

if (atomic_load_explicit(y,

memory_order_acquire)

== 2) {

assert(*x == 1); // Not OK

}

global int* x; local atomic_int* y;

Work-item 1 Work-item 2

Synchronizes-WithN
o

 H
ap

p
e

n
s-

B
e

fo
re

!
N

o
 H

ap
p

e
n

s-B
e

fo
re

!

// Not OK

IWOCL 2021 21

Correct Code with Separate Happens-Before:

*x = 1;

atomic_work_item_fence(

CLK_GLOBAL_MEM_FENCE |

CLK_LOCAL_MEM_FENCE,

memory_order_release,

memory_scope_device);

atomic_store_explicit(y, 2,

memory_order_relaxed);

if (atomic_load_explicit(y,

memory_order_relaxed)

== 2) {

atomic_work_item_fence(

CLK_GLOBAL_MEM_FENCE |

CLK_LOCAL_MEM_FENCE,

memory_order_acquire,

memory_scope_device);

assert(*x == 1); // OK!

}

global int* x; local atomic_int* y;

Work-item 1 Work-item 2

22IWOCL 2021

Other Memory Models
Vulkan

IWOCL 2021 23

▪ Also based upon C++11/C11, with added Scopes and Storage Classes

▪ Key addition: Availability and Visibility

▪ Limitation: No support for default C++ semantics (seq_cst)

Vulkan Memory Model

C++ Memory Order Vulkan Memory Model SPIR-V Memory Semantics

memory_order_relaxed None

memory_order_acquire MakeVisible | Acquire

memory_order_release MakeAvailable | Release

memory_order_acq_rel MakeAvailable | MakeVisible | AcquireRelease

memory_order_seq_cst No mapping available!

Table from: https://www.khronos.org/blog/comparing-the-vulkan-spir-v-memory-model-to-cs

https://www.khronos.org/blog/comparing-the-vulkan-spir-v-memory-model-to-cs

24IWOCL 2021

What is in SYCL 2020?

IWOCL 2021 25

SYCL 2020 Memory Model

▪ Significant improvement over the SYCL 1.2.1 memory model!

▪ Aligned well with C++20:

• Reuses many terms and syntax: atomic_ref and atomic_fence

▪ Aligned well with OpenCL 2.0:

• Includes memory scopes and memory regions for performance

• Key difference: single happens-before relation for all memory regions!

IWOCL 2021 26

sycl::atomic_ref

▪ sycl::atomic_ref is aligned with C++20, with additions:

• Order and scope follow OpenCL, and can be used to improve performance

• Address space associated with the referenced object

• Default order defined per sycl::atomic_ref, and can be overridden per operation

▪ No support for synchronization (i.e. wait, notify_one, notify_all)

template <typename T,
memory_order DefaultOrder,
memory_scope DefaultScope,
address_space Space = address_space::generic_space>

struct atomic_ref;

IWOCL 2021 27

Device and Context Queries in SYCL 2020

▪ SYCL is targeting diverse architectures:

• e.g. Some devices may not support sequential consistency

▪ Combinations of devices may have different capabilities:

• e.g. Sequential consistency across context with multiple architectures!?

▪ SYCL 2020 adds queries to devices and contexts:

• info::context::atomic_memory_order_capabilities,
info::context::atomic_memory_scope_capabilities

• info::device::atomic_memory_order_capabilities,
info::device::atomic_memory_scope_capabilities

28IWOCL 2021

What does the future hold?
Problems to solve in SYCL-Next?

IWOCL 2021 29

Similarities and Differences: C++ vs SYCL

▪ The default behavior of SYCL is now very close to C++17

▪ SYCL provides different consistency guarantees at different scopes:

• Work-item code always follows sequenced-before rules

• Groups of work-items can always enforce consistency via group barriers

• Enforcing consistency via atomics (e.g. across work-items) depends on device capabilities

▪ The visibility of SYCL allocations is also tied to scopes

• SYCL defaults to work-item visibility; C++ defaults to system visibility

• Should SYCL-Next change its defaults to align with C++?

IWOCL 2021 30

Forward Progress

▪ The above code is valid SYCL 2020... but isn’t guaranteed to work!

▪New language features required to help developers?

• Querying forward progress guarantees: work-items, sub-groups, work-groups?

• Declaring that a kernel requires (assumes) specific guarantees for correctness?

q.parallel_for(nd_range(N, L), [=](nd_item<1> it) {
auto sg = item.get_sub_group();
if (!sg.leader()) {
// Spin until flag is set
while (atomic_ref<int, memory_order::acquire, memory_scope::device>(flag) == 0) {};

} else {
// Set flag after performing some work
...
atomic_ref<int, memory_order::release, memory_scope::device>(flag) = 1;

}
});

31IWOCL 2021

Summary and Call to Action

IWOCL 2021 32

Summary and Call to Action

▪ SYCL 2020 has a significantly improved memory model

• Syntactically aligned with modern C++

• Incorporates scopes and address spaces to improve performance

• Add queries to support diverse device capabilities

▪ There is still work to be done! We're looking for your help!

• Formal modeling to prove correctness

• Forward progress guarantees to assure correctness and to improve portability

• Other features that you need for your code bases?

▪Many parts of SYCL could benefit from research projects. Reach out!

33IWOCL 2021

Thank you!

IWOCL 2021 34

Notices & Disclaimers

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to
assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products. For more complete information visit www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup
for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and
brands may be claimed as the property of others.

Khronos and the Khronos Group logo are registered trademarks of the Khronos Group Inc.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

SYCL and the SYCL logo are trademarks of the Khronos Group Inc.

35

