
SYCLops: A SYCL Specific
LLVM to MLIR Converter

IWOCL & SYCLcon 2022 – May 2022

Huawei Heterogeneous Compiler Lab, Canada

Alexandre Singer
(Presenter)

Kai-Ting Amy WangFrank (Fang) Gao

Agenda

• Background
• LLVM
• MLIR
• oneAPI’s SYCL Implementation

• The SYCLops Converter
• Overview
• Design Principles
• Design

• Evaluation

• Future Work

Background: LLVM

Front-end Mid-end Back-endSource LLVM IR LLVM IR Object

https://llvm.org/Logo.html

https://llvm.org/Logo.html

Background: Multi-Level Intermediate
Representation (MLIR)
• Simplifies higher-level optimizations.

• Multi-Level Dialects
• Affine Dialect: affine analysis, control flow, and

operations.

• SCF Dialect: non-affine control flow.

• Arithmetic Dialect: arithmetic operations.

• MLIR Types of interest
• MemRef: MLIR’s array representation.

• Index: device-specific width integer.

https://mlir.llvm.org/

https://mlir.llvm.org/

Background: oneAPI’s SYCL Implementation

• LLVM-based.

• Compiles the host and device through two
separate compilers.

• The Device Front-end Compiler emits LLVM IR
to the Device Compiler.

• Device Compiler optimizes and lowers the
LLVM IR to an Object File to be executed on the
device.

• Problem: oneAPI’s Device Front-end Compiler
is unable to emit MLIR code.

The SYCLops Converter: Overview

• LLVM IR MLIR.

• Higher level optimizations within Device
Compiler.

• The MLIR code can be lowered back to LLVM IR
for more transformations and lowering.

• Minimal changes to oneAPI.

The SYCLops Converter: Why LLVM to MLIR?

• Why SYCL, to LLVM, to MLIR; instead of SYCL directly to MLIR?
1. MLIR is relatively young compared to LLVM.

2. It is easier to enter into LLVM first.

3. Many other projects are not production ready yet and are for generating
general C++ source files, not SYCL source files.

4. SYCLops was designed to target device code, as opposed to device and host.

The SYCLops Converter: Design Principles

Extensibility

Program Structure Preservation

Block and CFG
Separation

Error
Handling

Design Principles: Extensibility

• SYCLops was designed to be extensible.

• Two types of modules:
1. Base Module: Interprets the SYCL

constructs and control flow being passed
in.

2. Backend-specific Sub Modules: Works
with the Base Module to translate the
LLVM IR into the target IR.

• As well as targeting MLIR, SYCLops
could be used to generate hybrid script
that can be used to target AKG (based
on TVM).

Base Module

MLIR Sub
Module

Hybrid Script
Sub Module

LLVM
IR

MLIR Hybrid
Script

Design Principles: Program Structure
Preservation
• Main purpose of SYCLops is to convert not optimize.

• More efficient to generate sub-optimal code, and then write
compiler passes to optimize it for a given hardware.

• Allows for compilers to have more control over the optimizations.

• SYCLops will generate code as close to the incoming LLVM IR as
possible.

Design Principles: Block and CFG Separation

• The control flow of the incoming IR will
likely be completely different.
• LLVM does not have dedicated instructions for

For Loops or If Statements.

• Other instructions, such as arithmetic and
memory loads, are likely to be very similar.

• Thus, SYCLops separates the conversion of
the control flow instructions from the
other Block instructions.

LLVM IR

Block
Operations

Control Flow
Operations

MLIR

Design Principles: Appropriate Error Handling

• SYCLops follows strict error handling.

• Unacceptable for SYCLops to emit invalid code.
• Must convert the incoming IR correctly or crash trying.

• Simplifies the debugging and maintenance of the SYCLops converter.

• Ensures stability and longevity.

The SYCLops Converter: Design

Design: Preprocessing

• Transformation passes designed to simplify the
conversion process.

• Ensure that the incoming IR is in an expected
form.

• Two types of passes:
1. Conversion Simplification Passes: Prepares the

IR for instruction generation.

2. Control Flow Simplification Passes: Simplifies
the control flow of the incoming IR.

• After this stage, the IR will not be changed.

Preprocessing Stage

LLVM
IR

LLVM
IR

Design: IR Analysis

• Extracts two main pieces of information:
1. The shape of pointers.

2. The control flow of the incoming IR.

• Specialized Shape class
• Contains the rank, size of each dimension, element type, and address space of

a pointer.

• The Shape objects are stored for use later in the conversion process.

• A Control Flow Graph (CFG) is generated of the incoming IR.
• Used to reconstruct the control flow in the target IR.

Design: Block Generation

• Where the conversion begins.

• LLVM IR Basic Blocks are traversed,
converting non-control flow instructions to
MLIR and inserting into MLIR blocks.

• Loop latch blocks and If header blocks are
collected and used to generate For and If
operations after the blocks are generated.

• After this point, all operations have been
generated for the given function.

Block 1

Block 2

LLVM IR

Basic Blocks

…

Block 1

Block 2

MLIR

Blocks

…

Control Flow Operations

Design: CFG Reconstruction

• MLIR Blocks are not connected together.

• Connects the MLIR blocks and control flow
operations together according to the
Control Flow Graph.

• CFG is recursively traversed, merging the
blocks together and inserting the For/If
operations where needed.

• All operations will exist within a single
Function Body Block.

Block 1

Block 2

MLIR

Blocks

…

Control Flow Operations

Function Body Block

MLIR

Blocks

Design: Finalization

• Inserts the Function Body Block into an MLIR
func op.

• MLIR represents pointers differently to LLVM
and not all function arguments will be used.
• MLIR Function prototype will not match original

LLVM Function prototype.

• A Trampoline Function is used.
• The original contents of the LLVM function are

replaced with a function call which will call the
output of the converter as if it were to be
lowered to LLVM IR.

Function Body Block

MLIR

Function

Call MLIR Function

LLVM

Function

Design: Summary

oneAPI’s
Device
Front-end
Compiler

LLVM Device Kernel
Function

Preprocessing

IR Analysis

Block Generation

CFG
Reconstruction

Evaluation: Overview

• Perform three experiments:
1. Kernel Scalability Analysis: Does SYCLops perform as expected on a real

MLIR Compiler?

2. MLIR Optimization Study: How much improvement does MLIR
optimizations provide for a given kernel?

3. Converter Functionality Demonstration: Does SYCLops work on
complicated and interesting machine learning kernels.

• All tests are run inside Huawei’s SYCL compiler, performed on an
Ascend 910 server.

Evaluation: Kernel Scalability Analysis

• Experiments were performed on 2D Relu kernels of varying sizes.
• As to be expected, as shape size increases so does execution time; where

32B aligned memory (no tails) is usually faster than non-32B aligned
memory (with tails).
• Consequence of the Ascend hardware’s minimum DMA size.

• Dramatic increase in performance between the shapes 68x2048 and
136x2048 is caused by double buffering within the compiler being
activated.

• As shown, SYCLops is able to generate legal MLIR code that achieves
expected performance results.

Evaluation: MLIR Optimization Study
• Sigmoid kernel on the left was

generated with SYCLops.

• Investigate two transformations:
Affine Loop Fusion and Affine Super
Vectorize.

• Found 1.43x and 1.47x speedup from
vectorization and 1.05x speedup from
loop fusion.

Evaluation: Converter Functionality
Demonstration

Kmeans kernel in SYCL C++ source file SYCLops MLIR output for the Kmeans kernel

Imperfect loop nest

Iteration arguments and
escaping scalars

Conditional branching

Future Work

• There are two main situations that SYCLops is unable to convert:
1. Complex Control Flow: Loops that cannot be expressed in canonicalized

form or kernels with exits that cannot be simplified to a single exit cannot
be converted by SYCLops yet.

2. Built-in SYCL functions: SYCL has many built-in functions that cannot be
expressed in MLIR yet.

