University of Stuttgart
Germany

Institute for Parallel and
Distributed Systems

I°VSs

Scientific Computing

3,

Marcel.Breyer@ipvs.uni-stuttgart.de

Marcel

Breyer

Performance-Portable
Distributed k-Nearest
Neighbors using
Locality-Sensitive Hashing
and SYCL

mailto:Marcel.Breyer@ipvs.uni-stuttgart.de

Motivation: Data Mining - Classification

e data mining is important in the age of data collection
e classification as one task

¢ k-Nearest Neighbors as one classifier (proposed by Thomas Cover and P. Hart in 1967)

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Motivation: Data Mining - Classification

e data mining is important in the age of data collection

classification as one task

k-Nearest Neighbors as one classifier (proposed by Thomas Cover and P. Hart in 1967)

* naive Brute-Force is infeasible for large data sets

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Motivation: Data Mining - Classification

e data mining is important in the age of data collection

classification as one task

k-Nearest Neighbors as one classifier (proposed by Thomas Cover and P. Hart in 1967)

* naive Brute-Force is infeasible for large data sets

- Locality-Sensitive Hashing

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Locality-

Sensitive
Hashing

LocalitY'SenSitive HaShing (proposed by Piotr Indyk and Rajeev Motwani)

hash value points

0

2
3
4

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

LocalitY'SenSitive HaShing (proposed by Piotr Indyk and Rajeev Motwani)
o
([]

hash value points

0

2
3
4

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

LocalitY'SenSitive HaShing (proposed by Piotr Indyk and Rajeev Motwani)

o
K)
\ ° |
\ Y @ \ \
\ \ 1 \\ \
- : R A 4 A
hash valu oints
el P 0 1 2 3
0
1
2
3
4

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

LocalitY'SenSitive HaShing (proposed by Piotr Indyk and Rajeev Motwani)

o
K)
\ ° |
. \\ \\ ‘\
\ \
\\ \‘ . . \‘
N \ 1 \ \
\ \ \ \ \
- Pt
hash valu oints
el P 0 1 2 3
0
L D :
1) o |
2 . e
3 ® <
4

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

LocalitY'SenSitive HaShing (proposed by Piotr Indyk and Rajeev Motwani)

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

o
\\ [) k=1
N ° |
.\ \\ \\ ‘\
R ' \ °
\ \ 1 \\ \)
- | Pt
oints
hash value P 0 1 2 3
0
L D :
1) o |
2 . e
3 ® <
4

LocalitY'SenSitive HaShing (proposed by Piotr Indyk and Rajeev Motwani)

o
\ ° k=1
- too many points per bucket | °® |
- use multiple hash functions o \ |
9(#) = h1(Z) 0 ... 0 by () oy ® \ \ ®
- : I‘\ LR | | K | Y | < bo--
nts
hash value poi 0 1 2 3
0
® :
1 [) °® ot
2 . e
3 ° et
4 P <

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

LocalitY'SenSitive HaShing (proposed by Piotr Indyk and Rajeev Motwani)

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

o
\\ [) k=1
N ° |
.\ \\ \\ ‘\
R ' \ °
\ \ 1 \\ \)
- | Pt
oints
hash value p 0 1 2 3
0
L D :
1) o |
2 . B R L
3 ® <
4

LocalitY'SenSitive HaShing (proposed by Piotr Indyk and Rajeev Motwani)

- too few points per bucket
- use multiple hash tables

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Y k=1
\ ° |
.\ \\ \\ ‘\
R ' \ °
\ \ 1 \\ \ “
- | Pt
oints
hash value p 0 1 2 3
0
L D :
1) o | :
2 . B R L
3 ° et
4 P <

Random PrOjectionS (proposed by Mayur Datar et al.)

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Random PrOjectionS (proposed by Mayur Datar et al.)

—
. a
\
\
\ n \
. \ " !
\ \ VY !
\ \ v '
\ \ . v ! .
\ \ 1 v ' \
\ \ | v \ \
\ \ 1 \ \ 1 \
n U | Y AR | Y Y
o

@ € R% independently choosen from the normal distribution
b€ R: choosen uniformly from [0, w]

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Random PrOjectionS (proposed by Mayur Datar et al.)

-

v l‘
[!
\ . vy ! .
\ \ 1 v ' \
\ \ ' VN \ \
\ \ \ [! \
| L < v | .4 | A A
| | | g | |
0 1 2 3 4
w

@ € R% independently choosen from the normal distribution
b€ R: choosen uniformly from [0, w]

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Entropy-Based Hash Functions (proposed by Qiang Wang et al.)

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Entropy-Based Hash Functions (proposed by Qiang Wang et al.)

!/ = — —
P W(¥)=d-7
\
\
\ @
\
\ o :
\ \
o \ |
\ \ \ !
\ \ v '
\ \ . \ \ .
\ \ | \ ' \
\ \ 1 \ ' \
\ \ \ \ 1 \
b U | Y A | Y Y

@ € R%: independently choosen from
the normal distribution

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Entropy-Based Hash Functions (proposed by Qiang Wang et al.)

®
\ .\ “
\\\ ‘\\ .I \\\ ‘I\
FER IR | P X
| |
q1 q2
0.67 1.25

@ € R%: independently choosen from

the normal distribution

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

W(7

r

w

81

Entropy-Based Hash Functions (proposed by Qiang Wang et al.)

° W@ =d T
3 ® r=3
\\ .\ “
.\ \\ \\ “
\\ ‘\ .| \\\ I\ .‘
B 1| Y 1 Y X
0 q1 1 q2 2
0.67 1.25

0 A'(Z) <@
@ € R%: independently choosen from h(f) =<1 ¢ < h’(j’) < ¢
the normal distribution

]/ =
2 h (ZC) > @9
Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

What is SYCL?

e cross-platform abstraction layer for heterogeneous computing
- can target a variety of different hardware platforms
-> SYCL 1.2.1: build on top of OpenCL
-> SYCL 2020: allows the usage of other backends like NVIDIA's CUDA,
AMD’s ROCm, or Intel’s Level Zero

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

What is SYCL?

e cross-platform abstraction layer for heterogeneous computing
- can target a variety of different hardware platforms
-> SYCL 1.2.1: build on top of OpenCL
-> SYCL 2020: allows the usage of other backends like NVIDIA's CUDA,
AMD’s ROCm, or Intel’s Level Zero

e combines the concepts, portability, and efficiency of standards like OpenCL
with the ease of use of modern C++
- C++ constructs like templates or inheritance in kernel code explicitly
allowed

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

What is SYCL?

e cross-platform abstraction layer for heterogeneous computing
- can target a variety of different hardware platforms
-> SYCL 1.2.1: build on top of OpenCL
-> SYCL 2020: allows the usage of other backends like NVIDIA's CUDA,
AMD’s ROCm, or Intel’s Level Zero

e combines the concepts, portability, and efficiency of standards like OpenCL
with the ease of use of modern C++
- C++ constructs like templates or inheritance in kernel code explicitly

allowed

e Single-Source Multiple Compiler-Passes

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Why use SYCL?

20

B ENERGY r I‘y} INTEn
Y e e

AMDA

)
Frontier: AMD CPUs + AMD GPUs

(3)

Aurora: Intel CPUs + Intel GPUs

HPC5: Intel CPUs + NVIDIA GPUs

1): www.hpe . com/de/de/compute/hpc/cray/oak-ridge-national-laboratory.html (01.04.2021)
2): www.waccpd.org/wp-content/uploads/2019/12/NickWright_Keynote_N9_WACCPD_2019.pdf (01.04.2021)
3): www.hpe.com/uk/en/compute/hpc/cray/argonne-national-laboratory.html (01.04.2021)

(4): www.eni.com/en-IT/operations/green-data-center-hpc5.html (01.04.2021)

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

www.hpe.com/de/de/compute/hpc/cray/oak-ridge-national-laboratory.html
www.waccpd.org/wp-content/uploads/2019/12/NickWright_Keynote_N9_WACCPD_2019.pdf
www.hpe.com/uk/en/compute/hpc/cray/argonne-national-laboratory.html
www.eni.com/en-IT/operations/green-data-center-hpc5.html

SYCL Implementations

SYCL, OpenCL and SPIR-V, as open industry SYCL enables Khronos to
standards, enable flexible integration and (SYCL influence 1SO C++ to (eventually)
deployment of multiple acceleration technologies Source Code support heterogeneous compute

 codeplay’

€ ComputeCpp

£ XILINX. ipS) HEibEraers
DPC++ ComputeCpp triSYCL hipSYCL
Uses LLVM/Clang Multiple
Part of oneAPI

neoSYCL
SX-AURORA
TSUBASA

Open source CUDA and
Backends test bed HIP/ROCm

7, OpencL OperMP

Any CPU cuoaspTx [l" Any cPU [l TopenciipTx

OpenMP
NVIDIA GPUs

Imuawpadeg

NVIDIA GPUs NVIDIA GPUs
[OpencL + OpenCL e#d OpenCL +
CSPIR CS - SPIR((SEtR. SPIR/LLVM |n:‘,§|c s:gsjs
Intel CPUs Intel CPUs XILINX FPGAs
Intel GPUs Intel GPUs POCL
Intel FPGAs Intel FPGAs e Ol Multiple Backends in Development
ﬂenifgim SPUs and mare) SYCL beginning to be supported on multiple
ety m low-level APIs in addition to OpenCL
MG PowerVR e.g., ROCm and CUDA
Renesas R-Car For more information: http://sycl.tech

www.khronos.org/sycl/ (01.04.2021)
Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

www.khronos.org/sycl/

Implemen-

tation

Distributed Multi-GPU Support using MPI

GPU 0 GPU 1 GPU 2

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Distributed Multi-GPU Support using MPI

MPI rank O MPI rank 1 MPI rank 2
GPUO GPU 1 GPU 2

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Distributed Multi-GPU Support using MPI

MPI rank O MPI rank 1 MPI rank 2
GPUO GPU 1 GPU 2

| |

binary (Ijata file
MPI 1O

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Distributed Multi-GPU Support using MPI

MPI rank O MPI rank 1 MPI rank 2

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Distributed Multi-GPU Support using MPI

MPI rank O MPI rank 1 MPI rank 2
GPU O GPU 1 GPU 2

B
N N N

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Distributed Multi-GPU Support using MPI

MPI rank O MPI rank 1 MPI rank 2
GPU O GPU 1 GPU 2

MPI_Sendrecv_replace

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Setup

argon-gtx

Intel’s devcloud

processors Intel Xeon Gold 5120 Intel 19-10920X
number of sockets 2 1
processor frequency 2.2GHz 3.5GHz
total number of cores 28 (56 threads) 12 (24 threads)
main memory 754 GB 32GB
accelerators 8x NVIDIA GeForce 1080Ti Intel Iris X® MAX
SYCL ComputeCpp, hipSYCL, DPC++ DPC++

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Setup

argon-gtx Intel’s devcloud
processors Intel Xeon Gold 5120 Intel 19-10920X
number of sockets 2 1
processor frequency 2.2GHz 3.5GHz
total number of cores 28 (56 threads) 12 (24 threads)
main memory 754 GB 32GB
accelerators 8x NVIDIA GeForce 1080Ti Intel Iris X® MAX
SYCL ComputeCpp, hipSYCL, DPC++ DPC++

friedman: 500000 points in 10 dimensions (synthetic)
HIGGS: 1000000 points in 27 dimensions (real world)

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Evaluation Metrics

true positives

relevant elements

recall

1 1k distpsy, T
AP IPELELy Sp =7
N =k j=1 dZStcorrectj Tp

error ratio speedup

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Random Projections - friedman

+ ComputeCpp
1004 + hipSYCL
+ DPC++

ComputeCpp

1004 hipSYCL

= _ DPC++
2]

c « DPC++lris X® c DPC++ Iris X°
o 104 o 104
£ E
€ €
5 2

14 1

0 20 40 60 80 100 1.0 15 20 25
recall (in %) error ratio

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Entropy-Based Hash Functions - friedman

100

runtime (in s)

10 , .o',:o 3 FL r ."j':‘;‘;._'{:f,:‘.f

ComputeCpp

hipSYCL
DPC++ o -:'.:
DPC++Iris X® |o v s

00’

recall (in %)

runtime (in s)

100

10+

{ « ComputeCpp
: - hipSYCL

’! . DPC++

i . - DPC++ lris X°
1.0 15 2.0 2.5 30

error ratio

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Entropy-Based Hash Functions - friedman

1001 1007

ComputeCpp : - ComputeCpp
hipSYCL t - hipSYCL

— « DPC++ — DPC++

» 104 —% @ 104 o Y

£ DPC++ Iris X k= DPC++ Iris X

© ©

£ E

3 1 S 1

0<

1.0
recall (in %)

error ratio

- without hash function creation

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Scaling - Speedup

entropy-based without
hash function creation

random projections entropy-based

speedup

2 4 6 8 2 4 6 8 2 1 6
number of GPUs
—-—— ComputeCpp (friedman) --- hipSYCL (friedman) —— theoretical speedup
—— ComputeCpp (HIGGS) —— hipSYCL (HIGGS)

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Scaling - Runtimes per Round - Random Projections

friedman

& 150 1
€
£
© 100 -
E
15
2
50 1

(e
I

round

6

HIGGS
1000 A
800 A
600 A
400 A
200 1
0 .
7 8 1 2 3 4 5 6 7 8
round

I ComputeCpp B hipSYCL

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Conclusion

e better recalls and error ratios increase runtime
- if smaller recalls or bigger error ratios are sufficient, the runtime
decreases drastically

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Conclusion

e better recalls and error ratios increase runtime
- if smaller recalls or bigger error ratios are sufficient, the runtime
decreases drastically

e comparable results for random projections and entropy-based hash
functions

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Conclusion

e better recalls and error ratios increase runtime
- if smaller recalls or bigger error ratios are sufficient, the runtime
decreases drastically

e comparable results for random projections and entropy-based hash
functions

e easily scalable on multiple GPUs
- parallel speedup of up to 7 using 8 GPUs
- for short kernel invocations hipSYCL scales better than ComputeCpp
because of a smaller static overhead

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Conclusion

e better recalls and error ratios increase runtime
- if smaller recalls or bigger error ratios are sufficient, the runtime
decreases drastically

e comparable results for random projections and entropy-based hash
functions

e easily scalable on multiple GPUs
- parallel speedup of up to 7 using 8 GPUs
- for short kernel invocations hipSYCL scales better than ComputeCpp
because of a smaller static overhead

e runtime characteristics are similar for ComputeCpp, hipSYCL, and DPC++
-> except for ComputeCpp and DPC++ when using entropy-based hash
functions and NVIDIA GPUs in the hash function creation step

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

Further Reading

k-Nearest Neighbors as Classifier
Thomas Cover and P. Hart. “Nearest neighbor pattern classification” In: /EEE Transactions on
Information Theory (1967)

Locality-Sensitive Hashing
Piotr Indyk and Rajeev Motwani. “Approximate nearest neighbors: towards removing the
curse of dimensionality” In: Proceedings of the thirtieth annual ACM symposium on Theory of
computing. 1998, pp. 604-613

Random Projections
Mayur Datar et al. “Locality-sensitive hashing scheme based on p-stable distributions” In:
Proceedings of the twentieth annual ACM symposium on Computational geometry. ACM Press,
2004

Entropy-Based Hash Functions
Qiang Wang et al. “Entropy based locality sensitive hashing” In: 20712 |EEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2012

SYCL (DPC++)
James Reinders et al. Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous
Systems using C++ and SYCL. Springer Nature, 2021

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL

University of Stuttgart
Germany

Marcel Breyer Gregor Dail3

Marcel.Breyer @ipvs.uni-stuttgart.de Gregor.Daiss @ipvs.uni-stuttgart.de Dirk.Pflue
+49 711 685-88427 +49 711 685-88365

mailto:Marcel.Breyer@ipvs.uni-stuttgart.de
mailto:Gregor.Daiss@ipvs.uni-stuttgart.de
mailto:Dirk.Pflueger@ipvs.uni-stuttgart.de

	Locality-Sensitive Hashing
	SYCL
	Implementation
	Results
	Conclusion

