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Motivation: Data Mining - Classification

e data mining is important in the age of data collection
e classification as one task

¢ k-Nearest Neighbors as one classifier (proposed by Thomas Cover and P. Hart in 1967)
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Motivation: Data Mining - Classification

e data mining is important in the age of data collection

classification as one task

k-Nearest Neighbors as one classifier (proposed by Thomas Cover and P. Hart in 1967)

* naive Brute-Force is infeasible for large data sets

- Locality-Sensitive Hashing
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LocalitY'SenSitive HaShing (proposed by Piotr Indyk and Rajeev Motwani)
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LocalitY'SenSitive HaShing (proposed by Piotr Indyk and Rajeev Motwani)
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LocalitY'SenSitive HaShing (proposed by Piotr Indyk and Rajeev Motwani)

- too few points per bucket
- use multiple hash tables
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Random PrOjectionS (proposed by Mayur Datar et al.)
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Random PrOjectionS (proposed by Mayur Datar et al.)
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Entropy-Based Hash Functions (proposed by Qiang Wang et al.)
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Entropy-Based Hash Functions (proposed by Qiang Wang et al.)

!/ = — —
P W(¥)=d-7
\
\
\ @
\
\ o :
\ \
o \ |
\ \ \ !
\ \ v '
\ \ . \ \ .
\ \ | \ ' \
\ \ 1 \ ' \
\ \ \ \ 1 \
b U | Y A | Y Y

@ € R%: independently choosen from
the normal distribution

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL



Entropy-Based Hash Functions (proposed by Qiang Wang et al.)
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Entropy-Based Hash Functions (proposed by Qiang Wang et al.)
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What is SYCL?

e cross-platform abstraction layer for heterogeneous computing
- can target a variety of different hardware platforms
-> SYCL 1.2.1: build on top of OpenCL
-> SYCL 2020: allows the usage of other backends like NVIDIA's CUDA,
AMD’s ROCm, or Intel’s Level Zero
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-> SYCL 2020: allows the usage of other backends like NVIDIA's CUDA,
AMD’s ROCm, or Intel’s Level Zero

e combines the concepts, portability, and efficiency of standards like OpenCL
with the ease of use of modern C++
- C++ constructs like templates or inheritance in kernel code explicitly
allowed
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What is SYCL?

e cross-platform abstraction layer for heterogeneous computing
- can target a variety of different hardware platforms
-> SYCL 1.2.1: build on top of OpenCL
-> SYCL 2020: allows the usage of other backends like NVIDIA's CUDA,
AMD’s ROCm, or Intel’s Level Zero

e combines the concepts, portability, and efficiency of standards like OpenCL
with the ease of use of modern C++
- C++ constructs like templates or inheritance in kernel code explicitly

allowed

e Single-Source Multiple Compiler-Passes
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Why use SYCL?

20

B ENERGY r I‘y} INTEn
Y e e

AMDA

)
Frontier: AMD CPUs + AMD GPUs

(3)

Aurora: Intel CPUs + Intel GPUs

HPC5: Intel CPUs + NVIDIA GPUs

1): www.hpe . com/de/de/compute/hpc/cray/oak-ridge-national-laboratory.html (01.04.2021)
2): www.waccpd.org/wp-content/uploads/2019/12/NickWright_Keynote_N9_WACCPD_2019.pdf (01.04.2021)
3): www.hpe.com/uk/en/compute/hpc/cray/argonne-national-laboratory.html (01.04.2021)

(4): www.eni.com/en-IT/operations/green-data-center-hpc5.html (01.04.2021)
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SYCL Implementations

SYCL, OpenCL and SPIR-V, as open industry SYCL enables Khronos to
standards, enable flexible integration and (SYCL influence 1SO C++ to (eventually)
deployment of multiple acceleration technologies Source Code support heterogeneous compute

 codeplay’

€ ComputeCpp

£ XILINX. ipS) HEibEraers
DPC++ ComputeCpp triSYCL hipSYCL
Uses LLVM/Clang Multiple
Part of oneAPI

neoSYCL
SX-AURORA
TSUBASA

Open source CUDA and
Backends test bed HIP/ROCm

7, OpencL OperMP

Any CPU cuoaspTx  [l" Any cPU [l TopenciipTx

OpenMP
NVIDIA GPUs

Imuawpadeg

NVIDIA GPUs NVIDIA GPUs
[ OpencL + OpenCL e#d OpenCL +
CSPIR CS - SPIR( (SEtR. SPIR/LLVM |n:‘,§|c s:gsjs
Intel CPUs Intel CPUs XILINX FPGAs
Intel GPUs Intel GPUs POCL
Intel FPGAs Intel FPGAs e Ol Multiple Backends in Development
ﬂenifgim SPUs and mare) SYCL beginning to be supported on multiple
ety m low-level APIs in addition to OpenCL
MG PowerVR e.g., ROCm and CUDA
Renesas R-Car For more information: http://sycl.tech

www.khronos.org/sycl/ (01.04.2021)
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Distributed Multi-GPU Support using MPI

GPU 0 GPU 1 GPU 2

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL



Distributed Multi-GPU Support using MPI

MPI rank O MPI rank 1 MPI rank 2
GPUO GPU 1 GPU 2
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Distributed Multi-GPU Support using MPI

MPI rank O MPI rank 1 MPI rank 2
GPUO GPU 1 GPU 2

| |

binary (Ijata file
MPI 1O
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Distributed Multi-GPU Support using MPI

MPI rank O MPI rank 1 MPI rank 2
GPU O GPU 1 GPU 2
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Distributed Multi-GPU Support using MPI

MPI rank O MPI rank 1 MPI rank 2
GPU O GPU 1 GPU 2

MPI_Sendrecv_replace
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Setup

argon-gtx

Intel’s devcloud

processors Intel Xeon Gold 5120 Intel 19-10920X
number of sockets 2 1
processor frequency 2.2GHz 3.5GHz
total number of cores 28 (56 threads) 12 (24 threads)
main memory 754 GB 32GB
accelerators 8x NVIDIA GeForce 1080Ti Intel Iris X® MAX
SYCL ComputeCpp, hipSYCL, DPC++ DPC++
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Setup

argon-gtx Intel’s devcloud
processors Intel Xeon Gold 5120 Intel 19-10920X
number of sockets 2 1
processor frequency 2.2GHz 3.5GHz
total number of cores 28 (56 threads) 12 (24 threads)
main memory 754 GB 32GB
accelerators 8x NVIDIA GeForce 1080Ti Intel Iris X® MAX
SYCL ComputeCpp, hipSYCL, DPC++ DPC++

friedman: 500000 points in 10 dimensions  (synthetic)
HIGGS: 1000000 points in 27 dimensions  (real world)
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Evaluation Metrics

true positives

relevant elements

recall

1 1k distpsy, T
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error ratio speedup
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Random Projections - friedman
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Entropy-Based Hash Functions - friedman
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Entropy-Based Hash Functions - friedman
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- without hash function creation
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Scaling - Speedup

entropy-based without
hash function creation

random projections entropy-based

speedup

2 4 6 8 2 4 6 8 2 1 6
number of GPUs
—-—— ComputeCpp (friedman) --- hipSYCL (friedman) —— theoretical speedup
—— ComputeCpp (HIGGS) —— hipSYCL (HIGGS)
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Scaling - Runtimes per Round - Random Projections

friedman
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Conclusion

e better recalls and error ratios increase runtime
- if smaller recalls or bigger error ratios are sufficient, the runtime
decreases drastically
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functions

Marcel Breyer, University of Stuttgart, IPVS, SC: Performance-Portable Distributed k-Nearest Neighbors using Locality-Sensitive Hashing and SYCL



Conclusion

e better recalls and error ratios increase runtime
- if smaller recalls or bigger error ratios are sufficient, the runtime
decreases drastically

e comparable results for random projections and entropy-based hash
functions

e easily scalable on multiple GPUs
- parallel speedup of up to 7 using 8 GPUs
- for short kernel invocations hipSYCL scales better than ComputeCpp
because of a smaller static overhead
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Conclusion

e better recalls and error ratios increase runtime
- if smaller recalls or bigger error ratios are sufficient, the runtime
decreases drastically

e comparable results for random projections and entropy-based hash
functions

e easily scalable on multiple GPUs
- parallel speedup of up to 7 using 8 GPUs
- for short kernel invocations hipSYCL scales better than ComputeCpp
because of a smaller static overhead

e runtime characteristics are similar for ComputeCpp, hipSYCL, and DPC++
-> except for ComputeCpp and DPC++ when using entropy-based hash
functions and NVIDIA GPUs in the hash function creation step
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