

Institute for Parallel and Distributed Systems

Scientific Computing

Marcel.Brever@ipvs.uni-stuttgart.de

Marcel Breyer

Performance-Portable
Distributed k-Nearest
Neighbors using
Locality-Sensitive Hashing
and SYCL

Motivation: Data Mining - Classification

- data mining is important in the age of data collection
- classification as one task
- k-Nearest Neighbors as one classifier (proposed by Thomas Cover and P. Hart in 1967)

Motivation: Data Mining - Classification

- data mining is important in the age of data collection
- classification as one task
- k-Nearest Neighbors as one classifier (proposed by Thomas Cover and P. Hart in 1967)
- naive Brute-Force is infeasible for large data sets

Motivation: Data Mining - Classification

- data mining is important in the age of data collection
- classification as one task
- k-Nearest Neighbors as one classifier (proposed by Thomas Cover and P. Hart in 1967)
- naive Brute-Force is infeasible for large data sets

→ Locality-Sensitive Hashing

hash value	points	
0		
1		
2		
3		
4		

hash value	points
0	
1	
2	
3	
4	

k = 1→ too few points per bucket → use multiple hash tables points hash value

Random Projections (proposed by Mayur Datar et al.)

Random Projections (proposed by Mayur Datar et al.)

 $\vec{a} \in \mathbb{R}^d$: independently choosen from the normal distribution

 $b \in \mathbb{R}$: choosen uniformly from [0, w]

Random Projections (proposed by Mayur Datar et al.)

 $\vec{a} \in \mathbb{R}^d$: independently choosen from the normal distribution

 $b \in \mathbb{R}$: choosen uniformly from [0, w]

 $\vec{a} \in \mathbb{R}^d$: independently choosen from the normal distribution

 $\vec{a} \in \mathbb{R}^d$: independently choosen from the normal distribution

 $\vec{a} \in \mathbb{R}^d$: independently choosen from the normal distribution

$$h(\vec{x}) = \begin{cases} 0 & h'(\vec{x}) \le q_1 \\ 1 & q_1 < h'(\vec{x}) \le q_2 \\ 2 & h'(\vec{x}) > q_2 \end{cases}$$

What is SYCL?

- cross-platform abstraction layer for heterogeneous computing
 - → can target a variety of different hardware platforms
 - → SYCL 1.2.1: build on top of OpenCL
 - → SYCL 2020: allows the usage of other backends like NVIDIA's CUDA, AMD's ROCm, or Intel's Level Zero

What is SYCL?

- cross-platform abstraction layer for heterogeneous computing
 - → can target a variety of different hardware platforms
 - → SYCL 1.2.1: build on top of OpenCL
 - → SYCL 2020: allows the usage of other backends like NVIDIA's CUDA, AMD's ROCm, or Intel's Level Zero
- combines the concepts, portability, and efficiency of standards like OpenCL with the ease of use of modern C++
 - → C++ constructs like templates or inheritance in kernel code explicitly allowed

What is SYCL?

- cross-platform abstraction layer for heterogeneous computing
 - → can target a variety of different hardware platforms
 - → SYCL 1.2.1: build on top of OpenCL
 - → SYCL 2020: allows the usage of other backends like NVIDIA's CUDA, AMD's ROCm, or Intel's Level Zero
- combines the concepts, portability, and efficiency of standards like OpenCL with the ease of use of modern C++
 - → C++ constructs like templates or inheritance in kernel code explicitly allowed
- Single-Source Multiple Compiler-Passes

Why use SYCL?

Frontier: AMD CPUs + AMD GPUs

(1)

Perlmutter (2)

Perlmutter: AMD CPUs + NVIDIA GPUs

(3)

(4)

Aurora: Intel CPUs + Intel GPUs

HPC5: Intel CPUs + NVIDIA GPUs

- (1): www.hpe.com/de/de/compute/hpc/cray/oak-ridge-national-laboratory.html (01.04.2021)
- (2): www.waccpd.org/wp-content/uploads/2019/12/NickWright_Keynote_N9_WACCPD_2019.pdf (01.04.2021)
- (3): www.hpe.com/uk/en/compute/hpc/cray/argonne-national-laboratory.html (01.04.2021)
- (4): www.eni.com/en-IT/operations/green-data-center-hpc5.html (01.04.2021)

SYCL Implementations

www.khronos.org/sycl/ (01.04.2021)

MPI rank 0 GPU 0	MPI rank 1 GPU 1	MPI rank 2 GPU 2

Setup

	argon-gtx	Intel's devcloud
processors	Intel Xeon Gold 5120	Intel i9-10920X
number of sockets	2	1
processor frequency	2.2 GHz	3.5 GHz
total number of cores	28 (56 threads)	12 (24 threads)
main memory	754 GB	32 GB
accelerators	8x NVIDIA GeForce 1080Ti	Intel Iris X ^e MAX
SYCL	ComputeCpp, hipSYCL, DPC++	DPC++

Setup

	argon-gtx	Intel's devcloud
processors	Intel Xeon Gold 5120	Intel i9-10920X
number of sockets	2	1
processor frequency	2.2 GHz	3.5 GHz
total number of cores	28 (56 threads)	12 (24 threads)
main memory	754 GB	32 GB
accelerators	8x NVIDIA GeForce 1080Ti	Intel Iris X ^e MAX
SYCL	ComputeCpp, hipSYCL, DPC++	DPC++

friedman: 500 000 points in 10 dimensions (synthetic)
HIGGS: 1 000 000 points in 27 dimensions (real world)

Evaluation Metrics

$$\frac{1}{N} \cdot \sum_{i=1}^{N} \left(\frac{1}{k} \cdot \sum_{j=1}^{k} \frac{dist_{LSH_j}}{dist_{correct_j}}\right)$$

$$S_p = \frac{T_1}{T_p}$$

recall

error ratio

speedup

Random Projections - friedman

Entropy-Based Hash Functions - friedman

Entropy-Based Hash Functions - friedman

→ without hash function creation

Scaling - Speedup

Scaling - Runtimes per Round - Random Projections

- better recalls and error ratios increase runtime
 - → if smaller recalls or bigger error ratios are sufficient, the runtime decreases drastically

- better recalls and error ratios increase runtime
 - → if smaller recalls or bigger error ratios are sufficient, the runtime decreases drastically
- comparable results for random projections and entropy-based hash functions

- better recalls and error ratios increase runtime
 - → if smaller recalls or bigger error ratios are sufficient, the runtime decreases drastically
- comparable results for random projections and entropy-based hash functions
- easily scalable on multiple GPUs
 - → parallel speedup of up to 7 using 8 GPUs
 - → for short kernel invocations hipSYCL scales better than ComputeCpp because of a smaller static overhead

- better recalls and error ratios increase runtime
 - → if smaller recalls or bigger error ratios are sufficient, the runtime decreases drastically
- comparable results for random projections and entropy-based hash functions
- easily scalable on multiple GPUs
 - → parallel speedup of up to 7 using 8 GPUs
 - → for short kernel invocations hipSYCL scales better than ComputeCpp because of a smaller static overhead
- runtime characteristics are similar for ComputeCpp, hipSYCL, and DPC++
 - → except for ComputeCpp and DPC++ when using entropy-based hash functions and NVIDIA GPUs in the hash function creation step

Further Reading

k-Nearest Neighbors as Classifier

Thomas Cover and P. Hart. "Nearest neighbor pattern classification". In: IEEE Transactions on Information Theory (1967)

Locality-Sensitive Hashing

Piotr Indyk and Rajeev Motwani. "Approximate nearest neighbors: towards removing the curse of dimensionality". In: *Proceedings of the thirtieth annual ACM symposium on Theory of computing.* 1998, pp. 604–613

Random Projections

Mayur Datar et al. "Locality-sensitive hashing scheme based on p-stable distributions". In: Proceedings of the twentieth annual ACM symposium on Computational geometry. ACM Press, 2004

Entropy-Based Hash Functions

Qiang Wang et al. "Entropy based locality sensitive hashing". In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2012

SYCL (DPC++)

James Reinders et al. Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous Systems using C++ and SYCL. Springer Nature, 2021

Marcel Breyer

Marcel.Breyer@ipvs.uni-stuttgart.de

+49 711 685-88427

Gregor Daiß
Gregor.Daiss@ipvs.uni-stuttgart.de
+49 711 685-88365

Dirk Pflüger

Dirk.Pflueger@ipvs.uni-stuttgart.de

+49 711 685-70413