
SYCL-Bench 2020: Benchmarking SYCL 2020 on

AMD, Intel, and NVIDIA GPUs

Luigi Crisci, University of Salerno

Lorenzo Carpentieri, Biagio Cosenza, University of Salerno

Peter Thoman, University of Innsbruck

Axel Alpay, Vincent Heuveline, University of Heidelberg

From SYCL 1.2.1 to SYCL 2020

2

▪ SYCL 1.2.1: high-level programming model on top of OpenCL

▪ Latest specification SYCL 2020 allow for third-party backends

▪ NVIDIA CUDA, AMD ROCm, Intel LevelZero, OpenMP, TBB, etc.

▪ Several new features

▪ Unified Shared Memory (USM)

▪ Built-in parallel reduction support

▪ Support for native API interoperability

▪ Work group and subgroup common algorithm libraries

▪ Third-party backends + multiple compilers complicates validation

SYCL-Bench 2020

4

▪ Extend SYCL-Bench [1] with SYCL 2020-
specific benchmark

▪ Original work designed for SYCL 1.2.1

▪ Characterize SYCL 2020 features on HPC
GPU hardware

▪ Evaluation of AdaptiveCpp and DPC++
implementations on data-center level
GPUs

[1]: Sohan Lal, Aksel Alpay, Philip Salzmann, Biagio Cosenza, Alexander Hirsch, Nicolai Stawinoga, Peter

Thoman, Thomas Fahringer, and Vincent Heuveline. 2020. Sycl-bench: a versatile cross-platform benchmark

suite for heterogeneous computing. In Euro-Par 2020: Parallel Processing. Maciej Malawski and Krzysztof

Rzadca, (Eds.) Springer International Publishing, Cham, 629–644. isbn: 978-3-030-57675-2

▪ 9 new benchmarks

▪ 44 different configurations

▪ Feature covered:

▪ Unified Shared Memory

▪ Kernel Reductions

▪ Specialization constants

▪ Group algorithms

▪ In-order queue

▪ Atomics

Experimental setup

5

▪ SYCL Implementations:

▪ AdaptiveCpp (git eeebfd4)

▪ Intel DPC++ (git f43cd7b)

▪ Three vendor GPUs:

▪ NVIDIA Tesla V100S (CUDA 12.1, driver 535.129.03)

▪ AMD MI100 (ROCm 5.5.0, driver 505.302.01)

▪ Intel Max 1100 (LevelZero driver 170.007.42)

Pattern 1: USM - Host-Device transfers

6

▪ Simulate different offloading scenarios

▪ Benchmark:

▪ 2GB data size

▪ Instruction mix (IM): host/device FLOP ratio

▪ 1 to 6 IM

▪ Outer Loop (OL): repeat the device and host kernels

▪ Rationale: Measure USM migration policies

Allocate USM

memory

Device

accessible?

Explicit host –

device copy

Device kernel

Host

accessible?

Explicit device –

host copy

Host kernel

n
o

y
e
s

no

Host-Device benchmark flowchart

yes

Pattern 1: USM - Host-Device transfers

7

2GB, OL 1 iteration Prefetch speedup over non-prefetched shared allocation

Pattern 1: USM - Host-Device transfers

8

4+ instruction mix to
match host alloc

Low performance
from shared on AMD

Shared alloc comparable
to device alloc

2GB, OL 1 iteration Prefetch speedup over non-prefetched shared allocation

~1.27x speedup with sycl::prefetch

Pattern 2: Reduction kernels & Group Reductions

9

▪ Two kind of SYCL reductions:

▪ Kernel reductions (KR): Kernel level, cross-group

▪ Group reductions (GR): WG or SG level

▪ Need to work for any SYCL supported type

▪ KR cannot be trivially implemented in some cases

▪ Benchmark:

▪ 150,000,000 elements

▪ 4 types (int32, int64, fp32, fp64)

▪ Coarsening factor (CF): element computed by each
thread

▪ Compared against local memory reduction w/ atomic
(LM)

▪ Rationale: measure SYCL implementations
reduction’s quality

[..]
int sum = 0;
q.submit([&](handler& h) {

auto r = reduction(&sum, h, sum<int>());
 accessor in(buf, h, access::read_only);

h.parallel_for(range, r, [=](item<1> i, auto& op)
{

op.combine(in[i]);
});

});
}

q.submit([&](handler& h) {
 accessor in(buf, h, access::read_only);

accessor out(out_v, h, access::write_only);
h.parallel_for(nd_range, [=](nd_item<1> i){

 auto& group = i.get_group();
out_v[i] = group_reduce(group, in[i], plus<int>());

});
});

//Tree reduction to combine elements
}

Pattern 2: Reduction kernels & Group Reductions

10

Pattern 2: Reduction kernels & Group Reductions

11

▪ DPC++ applies coarsening automatically
with sycl::range parallel_for

▪ Not possible with nd_range

DPC++ not influenced
by coarsening

Low performance on
Intel due to atomic

AdaptiveCPP requires manual coarsening

Pattern 2: Reduction kernels & Group Reductions

12

DPC++ not influenced
by coarsening

AdaptiveCPP requires manual coarsening

Low performance on
Intel due to atomic

2x KR speedup w/ DPC++
and AdaptiveCpp!

DPC++ GR on par with LM

▪ DPC++ applies coarsening automatically
with sycl::range parallel_for

▪ Not possible with nd_range

Pattern 3: In order queues

13

▪ Command executed in FIFO order

▪ Optimization opportunities:

▪ No dependency tracking needed (single queue)

▪ SYCL Task graph could be omitted

▪ Benchmark: Measure USM vs Buffer kernel
scheduling time

▪ Schedule 3 USM or Accessor buffer

▪ 50.000 addition kernels

▪ Rationale: check if implementations exploits
optimizaitons to improve scheduling latency

Kernel 1

Kernel 2

Kernel 3

Kernel 1

Kernel 2Kernel 3

[…]
using namespace sycl;
queue q{default_selector_v, property::queue::in_order{}}
[…]

Pattern 3: In order queues

15

4x speedup!

No effect on Accessors

Overhead on DPC++ ROCm backend

Pattern 4: Specialization constants

16

▪ Inject runtime values as constant in device
kernel

▪ Kernel is JIT-compiled and optimized

▪ Requires recompilation for each specialization
constant value change

▪ Implementation is backend-specific

▪ Benchmark:

▪ Stencil code with dynamic, constexpr, and
specialization constant parameters

▪ Inner Loop (IL) param to increase computation

▪ Rationale: Measure the impact of const
evaluation opt and JIT overhead

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;
static constexpr s::specialization_id<int> C;

int main(int, char**) {
[…]
q.submit([&](handler& h) {
h.set_specialization_constant<C>(runtime_value());
 accessor x(x_buf, h, access::read_only);

h.parallel_for(num_items, [=](item<1> i) {
int val = h.get_specialization_constant<C>();

 x[i] = val * 0.5f;
});

});
}

Pattern 4: Specialization constants

17

Pattern 4: Specialization constants

18

SC perf comparable to constexpr!

Pattern 4: Specialization constants

19

SC perf comparable to constexpr!

Nothing happen on NVIDIA and
AMD hardware

Pattern 4: Specialization constants

20

SC perf comparable to constexpr!

Nothing happen on NVIDIA and
AMD hardware

Up to 600x slowdown
with 2ms kernel

To summarize

23

▪ First benchmark suite for SYCL 2020

▪ 9 new benchmark

▪ 44 configurations

▪ The right USM allocation depends on the scenario

▪ In-order queue reduces scheduling time with USM

▪ No effect with Accessors

▪ Specialization constant do not currently work on NVIDIA and AMD

▪ Compiler maturity is steadily improving

24

SYCL-Bench 2020: Benchmarking SYCL 2020 on
AMD, Intel, and NVIDIA GPUs

https://github.com/unisa-hpc/sycl-bench/tree/sycl2020

Scan me!

Luigi Crisci

lcrisci@unisa.it

This project has received funding from the European Union's HE research and innovation programme under grant agreement No.

101092877 (SYCLops) and from the European High-Performance Computing Joint Undertaking under grant agreement No. 956137

(LIGATE project). Additionally, it has received funding from the Austrian Research Promotion Agency (FFG) via the UMUGUC project

(FFG \#4814683) and from the Italian Ministry of University and Research under PRIN 2022 grant No. 2022CC57PY (LibreRT project).

25

Backup slides

What’s SYCL?

26

▪ C++ royalty-free, cross-platform abstraction layer for heterogeneous computing

▪ Single-source, modern C++17 APIs

▪ Targets CPUs, GPUs, FPGAs, TPUs, etc. from multiple vendors

▪ Extension for Safety Critical environments (SYCL SC)

Credit: Kronos Group

SYCL implementations

27

Major implementations Additional implementations & extensions

Credits: Kronos Group

Unified Shared Memory

28

▪ Pointer-based, low-level memory
API for handling memory
allocations

▪ Lighter interface than sycl::buffer

▪ Common address space for both
host and device

▪ Three types of allocation:

Device

Host

CPU

GPU FPGA

TPU

Unified address space

Host memory Device memory

Device

Host

Unified Shared Memory

29

▪ Pointer-based, low-level memory
API for handling memory
allocations

▪ Lighter interface than sycl::buffer

▪ Common address space for both
host and device

▪ Three types of allocation:

▪ Host allocation

CPU

GPU FPGA

TPU

Unified address space

Host memory Device memory

malloc_host

Allocated:

Accessible:

Unified Shared Memory

▪ Pointer-based, low-level memory
API for handling memory
allocations

▪ Lighter interface than sycl::buffer

▪ Common address space for both
host and device

▪ Three types of allocation:

▪ Host allocation

▪ Device allocation

Device

Host

CPU

GPU FPGA

TPU

Unified address space

Host memory Device memory

malloc_device

30

Allocated:

Accessible:

Unified Shared Memory

31

▪ Pointer-based, low-level memory
API for handling memory
allocations

▪ Lighter interface than sycl::buffer

▪ Common address space for both
host and device

▪ Three types of allocation:

▪ Host allocation

▪ Device allocation

▪ Shared allocation

Device

Host

CPU

GPU FPGA

TPU

Unified address space

Host memory Device memory

malloc_shared

Allocated:

Accessible:

Unified Shared Memory

32

▪ Pointer-based, low-level memory
API for handling memory
allocations

▪ Lighter interface than sycl::buffer

▪ Common address space for both
host and device

▪ Three types of allocation:

▪ Host allocation

▪ Device allocation

▪ Shared allocation

▪ Each allocation suitable for different
scenarios

Device

Host

CPU

GPU FPGA

TPU

Unified address space

Host memory Device memory

malloc_host malloc_devicemalloc_shared

Allocated:

Accessible:

USM benchmark results (1)

33

Intel Max 1100 Nvidia Tesla V100S AMD MI100
H-D: 3 copies to match

Pinned alloc overhead

D-H: no benefit from non-

pinned memory

USM: Benchmarks

34

1) Task scheduling latency:

▪ Measure USM vs Buffer kernel scheduling time

▪ Schedule 3 USM or Accessor buffer

▪ 50.000 addition kernels

2) Host-Device transfers:

▪ Measure USM migration policy

▪ Simulate different offloading scenarios

▪ Instruction mix: host/device FLOP ratio

3) Pinned vs non-pinned memory:

▪ Measure host-device/device-host copy time
when using pinned/non-pinned allocations

▪ Host/device – device/host copies looped

Allocate USM

memory

Device

accessible?

Explicit host –

device copy

Device kernel

Host

accessible?

Explicit device –

host copy

Host kernel

n
o

y
e
s

no

Host-Device benchmark flowchart

yes

USM benchmark results (1)

35

Overhead on DPC++ ROCm backend

3.1x speedup!

Specialization constants

36

▪ Inject runtime values as constant in device
kernel

▪ Kernel is JIT-compiled and optimized

▪ Requires recompilation for each specialization
constant value change

▪ Implementation is backend-specific

▪ Benchmark:

▪ Stencil code with dynamic, constexpr, and
specialization constant parameters

▪ Inner Loop (IL) param to increase computation

▪ Rationale: Measure the impact of const
evaluation opt and JIT overhead

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;
static constexpr s::specialization_id<int> C;

int main(int, char**) {
constexpr size_t size = 10000;
queue q{gpu_selector_v};

 std::vector<float> x_vec(size, 1.0f);
buffer x_buf(x_vec.data());

 range<1> num_items{x_vec.size()};
q.submit([&](handler& h) {

h.set_specialization_constant<C>(runtime_value());

 accessor x(x_buf, h, access::read_only);
h.parallel_for(num_items, [=](item<1> i) {
int val = h.get_specialization_constant<C>();

 x[i] = val * 0.5f;
});

});

// … print results and returns
}

Atomic

37

Weird CAS loop behavior 120x overhead on first run on

int64

	Diapositiva 1
	Diapositiva 2: From SYCL 1.2.1 to SYCL 2020
	Diapositiva 4: SYCL-Bench 2020
	Diapositiva 5: Experimental setup
	Diapositiva 6: Pattern 1: USM - Host-Device transfers
	Diapositiva 7: Pattern 1: USM - Host-Device transfers
	Diapositiva 8: Pattern 1: USM - Host-Device transfers
	Diapositiva 9: Pattern 2: Reduction kernels & Group Reductions
	Diapositiva 10: Pattern 2: Reduction kernels & Group Reductions
	Diapositiva 11: Pattern 2: Reduction kernels & Group Reductions
	Diapositiva 12: Pattern 2: Reduction kernels & Group Reductions
	Diapositiva 13: Pattern 3: In order queues
	Diapositiva 15: Pattern 3: In order queues
	Diapositiva 16: Pattern 4: Specialization constants
	Diapositiva 17: Pattern 4: Specialization constants
	Diapositiva 18: Pattern 4: Specialization constants
	Diapositiva 19: Pattern 4: Specialization constants
	Diapositiva 20: Pattern 4: Specialization constants
	Diapositiva 23: To summarize
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26: What’s SYCL?
	Diapositiva 27: SYCL implementations
	Diapositiva 28: Unified Shared Memory
	Diapositiva 29: Unified Shared Memory
	Diapositiva 30: Unified Shared Memory
	Diapositiva 31: Unified Shared Memory
	Diapositiva 32: Unified Shared Memory
	Diapositiva 33: USM benchmark results (1)
	Diapositiva 34: USM: Benchmarks
	Diapositiva 35: USM benchmark results (1)
	Diapositiva 36: Specialization constants
	Diapositiva 37: Atomic

