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From SYCL 1.2.1 to SYCL 2020

2

▪ SYCL 1.2.1: high-level programming model on top of OpenCL

▪ Latest specification SYCL 2020 allow for third-party backends

▪ NVIDIA CUDA, AMD ROCm, Intel LevelZero, OpenMP, TBB, etc.

▪ Several new features

▪ Unified Shared Memory (USM)

▪ Built-in parallel reduction support

▪ Support for native API interoperability

▪ Work group and subgroup common algorithm libraries

▪ Third-party backends + multiple compilers complicates validation



SYCL-Bench 2020
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▪ Extend SYCL-Bench [1] with SYCL 2020-
specific benchmark

▪ Original work designed for SYCL 1.2.1

▪ Characterize SYCL 2020 features on HPC 
GPU hardware

▪ Evaluation of AdaptiveCpp and DPC++ 
implementations on data-center level 
GPUs

[1]: Sohan Lal, Aksel Alpay, Philip Salzmann, Biagio Cosenza, Alexander Hirsch, Nicolai Stawinoga, Peter 

Thoman, Thomas Fahringer,   and Vincent Heuveline. 2020. Sycl-bench: a versatile cross-platform benchmark 

suite for heterogeneous computing. In Euro-Par 2020: Parallel Processing. Maciej Malawski and Krzysztof 

Rzadca, (Eds.) Springer International Publishing, Cham, 629–644. isbn: 978-3-030-57675-2

▪ 9 new benchmarks

▪ 44 different configurations

▪ Feature covered:

▪ Unified Shared Memory 

▪ Kernel Reductions

▪ Specialization constants

▪ Group algorithms

▪ In-order queue

▪ Atomics



Experimental setup
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▪ SYCL Implementations: 

▪ AdaptiveCpp (git eeebfd4)

▪ Intel DPC++ (git f43cd7b)

▪ Three vendor GPUs:

▪ NVIDIA Tesla V100S (CUDA 12.1, driver 535.129.03)

▪ AMD MI100 (ROCm 5.5.0, driver 505.302.01)

▪ Intel Max 1100 (LevelZero driver 170.007.42)



Pattern 1: USM - Host-Device transfers
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▪ Simulate different offloading scenarios

▪ Benchmark:

▪ 2GB data size

▪ Instruction mix (IM): host/device FLOP ratio

▪ 1 to 6 IM

▪ Outer Loop (OL): repeat the device and host kernels

▪ Rationale: Measure USM migration policies
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Pattern 1: USM - Host-Device transfers
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2GB, OL 1 iteration Prefetch speedup over non-prefetched shared allocation



Pattern 1: USM - Host-Device transfers
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4+ instruction mix to 
match host alloc

Low performance 
from shared on AMD

Shared alloc comparable 
to device alloc

2GB, OL 1 iteration Prefetch speedup over non-prefetched shared allocation

~1.27x speedup with sycl::prefetch 



Pattern 2: Reduction kernels & Group Reductions
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▪ Two kind of SYCL reductions:

▪ Kernel reductions (KR): Kernel level, cross-group

▪ Group reductions (GR): WG or SG level

▪ Need to work for any SYCL supported type

▪ KR cannot be trivially implemented in some cases

▪ Benchmark:

▪ 150,000,000 elements

▪ 4 types (int32, int64, fp32, fp64)

▪ Coarsening factor (CF): element computed by each 
thread

▪ Compared against local memory reduction w/ atomic 
(LM)

▪ Rationale: measure SYCL implementations 
reduction’s quality

[..]
int sum = 0;
q.submit([&](handler& h) {

auto r = reduction(&sum, h, sum<int>());
    accessor in(buf, h, access::read_only);

h.parallel_for(range, r, [=](item<1> i, auto& op)      
{

op.combine(in[i]);
});

});
}

q.submit([&](handler& h) {
    accessor in(buf, h, access::read_only);

accessor out(out_v, h, access::write_only);
h.parallel_for(nd_range, [=](nd_item<1> i){

       auto& group = i.get_group();
out_v[i] = group_reduce(group, in[i], plus<int>());

});
});

//Tree reduction to combine elements
}



Pattern 2: Reduction kernels & Group Reductions
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Pattern 2: Reduction kernels & Group Reductions
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▪ DPC++ applies coarsening automatically 
with sycl::range parallel_for

▪ Not possible with nd_range

DPC++ not influenced 
by coarsening

Low performance on 
Intel due to atomic

AdaptiveCPP requires manual coarsening 



Pattern 2: Reduction kernels & Group Reductions
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DPC++ not influenced 
by coarsening

AdaptiveCPP requires manual coarsening 

Low performance on 
Intel due to atomic

2x KR speedup w/ DPC++ 
and AdaptiveCpp!

DPC++ GR on par with LM 

▪ DPC++ applies coarsening automatically 
with sycl::range parallel_for

▪ Not possible with nd_range



Pattern 3: In order queues
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▪ Command executed in FIFO order

▪ Optimization opportunities:

▪ No dependency tracking needed (single queue)

▪ SYCL Task graph could be omitted

▪ Benchmark: Measure USM vs Buffer kernel 
scheduling time

▪ Schedule 3 USM or Accessor buffer

▪ 50.000 addition kernels

▪ Rationale: check if implementations exploits 
optimizaitons to improve scheduling latency

Kernel 1

Kernel 2

Kernel 3

Kernel 1

Kernel 2Kernel 3

[…]
using namespace sycl;
queue q{default_selector_v, property::queue::in_order{}}
[…]



Pattern 3: In order queues

15

4x speedup!

No effect on Accessors

Overhead on DPC++ ROCm backend



Pattern 4: Specialization constants
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▪ Inject runtime values as constant in device 
kernel

▪ Kernel is JIT-compiled and optimized

▪ Requires recompilation for each specialization 
constant value change

▪ Implementation is backend-specific

▪ Benchmark:

▪ Stencil code with dynamic, constexpr, and 
specialization constant parameters

▪ Inner Loop (IL) param to increase computation

▪ Rationale: Measure the impact of const 
evaluation opt and JIT overhead

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;
static constexpr s::specialization_id<int> C;

int main(int, char**) {
[…]
q.submit([&](handler& h) {      
h.set_specialization_constant<C>(runtime_value());
    accessor x(x_buf, h, access::read_only);

h.parallel_for(num_items, [=](item<1> i) {
int val = h.get_specialization_constant<C>();

      x[i] = val * 0.5f;
});

});
}



Pattern 4: Specialization constants
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Pattern 4: Specialization constants
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SC perf comparable to constexpr!



Pattern 4: Specialization constants
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SC perf comparable to constexpr!

Nothing happen on NVIDIA and 
AMD hardware



Pattern 4: Specialization constants
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SC perf comparable to constexpr!

Nothing happen on NVIDIA and 
AMD hardware

Up to 600x slowdown 
with 2ms kernel



To summarize
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▪ First benchmark suite for SYCL 2020

▪ 9 new benchmark

▪ 44 configurations

▪ The right USM allocation depends on the scenario

▪ In-order queue reduces scheduling time with USM

▪ No effect with Accessors

▪ Specialization constant do not currently work on NVIDIA and AMD

▪ Compiler maturity is steadily improving
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SYCL-Bench 2020: Benchmarking SYCL 2020 on
AMD, Intel, and NVIDIA GPUs

https://github.com/unisa-hpc/sycl-bench/tree/sycl2020   

Scan me!

Luigi Crisci

lcrisci@unisa.it 

This project has received funding from the European Union's HE research and innovation programme under grant agreement No. 

101092877 (SYCLops) and from the European High-Performance Computing Joint Undertaking under grant agreement No. 956137 

(LIGATE project). Additionally, it has received funding from the Austrian Research Promotion Agency (FFG) via the UMUGUC project 

(FFG \#4814683) and from the Italian Ministry of University and Research under PRIN 2022 grant No. 2022CC57PY (LibreRT project). 
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Backup slides



What’s SYCL?
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▪ C++ royalty-free, cross-platform abstraction layer for heterogeneous computing

▪ Single-source, modern C++17 APIs

▪ Targets CPUs, GPUs, FPGAs, TPUs, etc. from multiple vendors 

▪ Extension for Safety Critical environments (SYCL SC)

Credit: Kronos Group



SYCL implementations

27

Major implementations Additional implementations & extensions

Credits: Kronos Group



Unified Shared Memory
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▪ Pointer-based, low-level memory 
API for handling memory 
allocations

▪ Lighter interface than sycl::buffer

▪ Common address space for both 
host and device

▪ Three types of allocation:

Device
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GPU FPGA

TPU

Unified address space

Host memory Device memory
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▪ Pointer-based, low-level memory 
API for handling memory 
allocations

▪ Lighter interface than sycl::buffer

▪ Common address space for both 
host and device

▪ Three types of allocation:

▪ Host allocation
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Unified Shared Memory

▪ Pointer-based, low-level memory 
API for handling memory 
allocations

▪ Lighter interface than sycl::buffer 

▪ Common address space for both 
host and device

▪ Three types of allocation:

▪ Host allocation

▪ Device allocation

Device

Host

CPU

GPU FPGA

TPU

Unified address space

Host memory Device memory

malloc_device

30

Allocated:

Accessible:



Unified Shared Memory
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▪ Pointer-based, low-level memory 
API for handling memory 
allocations

▪ Lighter interface than sycl::buffer 

▪ Common address space for both 
host and device

▪ Three types of allocation:

▪ Host allocation

▪ Device allocation

▪ Shared allocation

Device

Host

CPU

GPU FPGA

TPU

Unified address space

Host memory Device memory

malloc_shared

Allocated:

Accessible:



Unified Shared Memory
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▪ Pointer-based, low-level memory 
API for handling memory 
allocations

▪ Lighter interface than sycl::buffer 

▪ Common address space for both 
host and device

▪ Three types of allocation:

▪ Host allocation

▪ Device allocation

▪ Shared allocation

▪ Each allocation suitable for different 
scenarios

Device

Host

CPU

GPU FPGA

TPU

Unified address space

Host memory Device memory

malloc_host malloc_devicemalloc_shared

Allocated:

Accessible:



USM benchmark results (1)
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Intel Max 1100 Nvidia Tesla V100S AMD MI100
H-D: 3 copies to match 

Pinned alloc overhead

D-H: no benefit from non-

pinned memory



USM: Benchmarks
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1) Task scheduling latency:

▪ Measure USM vs Buffer kernel scheduling time

▪ Schedule 3 USM or Accessor buffer

▪ 50.000 addition kernels

2) Host-Device transfers:

▪ Measure USM migration policy

▪ Simulate different offloading scenarios

▪ Instruction mix: host/device FLOP ratio

3) Pinned vs non-pinned memory:

▪ Measure host-device/device-host copy time 
when using pinned/non-pinned allocations

▪ Host/device – device/host copies looped
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USM benchmark results (1)
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Overhead on DPC++ ROCm backend

3.1x speedup!



Specialization constants
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▪ Inject runtime values as constant in device 
kernel

▪ Kernel is JIT-compiled and optimized

▪ Requires recompilation for each specialization 
constant value change

▪ Implementation is backend-specific

▪ Benchmark:

▪ Stencil code with dynamic, constexpr, and 
specialization constant parameters

▪ Inner Loop (IL) param to increase computation

▪ Rationale: Measure the impact of const 
evaluation opt and JIT overhead

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;
static constexpr s::specialization_id<int> C;

int main(int, char**) {
constexpr size_t size = 10000;
queue q{gpu_selector_v};

  std::vector<float> x_vec(size, 1.0f);
buffer x_buf(x_vec.data());

  range<1> num_items{x_vec.size()};
q.submit([&](handler& h) {      

h.set_specialization_constant<C>(runtime_value());

    accessor x(x_buf, h, access::read_only);
h.parallel_for(num_items, [=](item<1> i) {
int val = h.get_specialization_constant<C>();

      x[i] = val * 0.5f;
});

});
  

// … print results and returns
}



Atomic
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Weird CAS loop behavior 120x overhead on first run on 

int64
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