IWOCL 2024

The 12th International Workshop on OpenCL and SYCL

SYCL-Bench 2020: Benchmarking SYCL 2020 on AMD, Intel, and NVIDIA GPUs

Luigi Crisci, University of Salerno

Lorenzo Carpentieri, Biagio Cosenza, University of Salerno Peter Thoman, University of Innsbruck Axel Alpay, Vincent Heuveline, University of Heidelberg

APRIL 8-11, 2024 | CHICAGO, USA | IWOCL.ORG

- SYCL 1.2.1: high-level programming model on top of OpenCL
- Latest specification SYCL 2020 allow for third-party backends
 - NVIDIA CUDA, AMD ROCm, Intel LevelZero, OpenMP, TBB, etc.
- Several new features
 - Unified Shared Memory (USM)
 - Built-in parallel reduction support
 - Support for native API interoperability
 - Work group and subgroup common algorithm libraries
- Third-party backends + multiple compilers complicates validation

SYCL-Bench 2020

- Extend SYCL-Bench [1] with SYCL 2020specific benchmark
 - Original work designed for SYCL 1.2.1
- Characterize SYCL 2020 features on HPC GPU hardware
- Evaluation of AdaptiveCpp and DPC++ implementations on data-center level GPUs

- 9 new benchmarks
- 44 different configurations
- Feature covered:
 - Unified Shared Memory
 - Kernel Reductions
 - Specialization constants
 - Group algorithms
 - In-order queue
 - Atomics

UNIVERSITÀ DEGLI STUDI DI SALERNO

[1]: Sohan Lal, Aksel Alpay, Philip Salzmann, Biagio Cosenza, Alexander Hirsch, Nicolai Stawinoga, Peter Thoman, Thomas Fahringer, and Vincent Heuveline. 2020. Sycl-bench: a versatile cross-platform benchmark suite for heterogeneous computing. In Euro-Par 2020: Parallel Processing. Maciej Malawski and Krzysztof Rzadca, (Eds.) Springer International Publishing, Cham, 629–644. isbn: 978-3-030-57675-2

- SYCL Implementations:
 - AdaptiveCpp (git eeebfd4)
 - Intel DPC++ (git f43cd7b)
- Three vendor GPUs:
 - NVIDIA Tesla V100S (CUDA 12.1, driver 535.129.03)
 - AMD MI100 (ROCm 5.5.0, driver 505.302.01)
 - Intel Max 1100 (LevelZero driver 170.007.42)

Pattern 1: USM - Host-Device transfers

Simulate different offloading scenarios

Benchmark:

- 2GB data size
- Instruction mix (IM): host/device FLOP ratio
 - 1 to 6 IM
- Outer Loop (OL): repeat the device and host kernels
- **Rationale:** Measure USM migration policies

Host-Device benchmark flowchart

Pattern 1: USM - Host-Device transfers

2GB, OL 1 iteration

Prefetch speedup over non-prefetched shared allocation

Pattern 1: USM - Host-Device transfers

- Two kind of SYCL reductions:
 - Kernel reductions (KR): Kernel level, cross-group
 - Group reductions (GR): WG or SG level
- Need to work for any SYCL supported type
 - KR cannot be trivially implemented in some cases

Benchmark:

- 150,000,000 elements
- 4 types (int32, int64, fp32, fp64)
- Coarsening factor (CF): element computed by each thread
- Compared against *local memory reduction* w/ atomic (*LM*)
- Rationale: measure SYCL implementations reduction's quality

[..] int sum = 0; q.submit([&](handler& h) { auto r = reduction(&sum, h, sum<int>()); accessor in(buf, h, access::read_only); h.parallel_for(range, r, [=](item<1> i, auto& op) { op.combine(in[i]); }); });

Pattern 3: In order queues

- Command executed in FIFO order
- Optimization opportunities:
 - No dependency tracking needed (single queue)
 - SYCL Task graph could be omitted
- Benchmark: Measure USM vs Buffer kernel scheduling time
 - Schedule 3 USM or Accessor buffer
 - 50.000 addition kernels
- Rationale: check if implementations exploits optimizaitons to improve scheduling latency

[...]
using namespace sycl;
queue q{default_selector_v, property::queue::in_order{}}
[...]

Pattern 3: In order queues

- Inject runtime values as constant in device kernel
- Kernel is JIT-compiled and optimized
- Requires recompilation for each specialization constant value change
- Implementation is backend-specific
- Benchmark:
 - Stencil code with *dynamic*, *constexpr*, and *specialization constant* parameters
 - Inner Loop (IL) param to increase computation
- Rationale: Measure the impact of const evaluation opt and JIT overhead

```
#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;
static constexpr s::specialization_id<int> C;
int main(int, char**) {
```

```
[...]
q.submit([&](handler& h) {
h.set_specialization_constant<C>(runtime_value());
    accessor x(x_buf, h, access::read_only);
    h.parallel_for(num_items, [=](item<1> i) {
        int val = h.get_specialization_constant<C>();
        x[i] = val * 0.5f;
     });
});
```


- First benchmark suite for SYCL 2020
 - 9 new benchmark
 - 44 configurations
- The right USM allocation depends on the scenario
- In-order queue reduces scheduling time with USM
 - No effect with Accessors
- Specialization constant do not currently work on NVIDIA and AMD
- Compiler maturity is steadily improving

SYCL-Bench 2020: Benchmarking SYCL 2020 on AMD, Intel, and NVIDIA GPUs

https://github.com/unisa-hpc/sycl-bench/tree/sycl2020

Luigi Crisci lcrisci@unisa.it

This project has received funding from the European Union's HE research and innovation programme under grant agreement No. 101092877 (SYCLops) and from the European High-Performance Computing Joint Undertaking under grant agreement No. 956137 (LIGATE project). Additionally, it has received funding from the Austrian Research Promotion Agency (FFG) via the UMUGUC project (FFG \#4814683) and from the Italian Ministry of University and Research under PRIN 2022 grant No. 2022CC57PY (LibreRT project).

Backup slides

What's SYCL?

- C++ royalty-free, cross-platform abstraction layer for heterogeneous computing
- Single-source, modern C++17 APIs
- Targets CPUs, GPUs, FPGAs, TPUs, etc. from multiple vendors
- Extension for Safety Critical environments (SYCL SC)

Credit: Kronos Group

SYCL implementations

Major implementations

Additional implementations & extensions

UNIVERSITÀ DEGLI STUDI DI SALERNO

Credits: Kronos Group

- Pointer-based, low-level memory API for handling memory allocations
- Lighter interface than sycl::buffer
- Common address space for both host and device
- Three types of allocation:

- Pointer-based, low-level memory API for handling memory allocations
- Lighter interface than sycl::buffer
- Common address space for both host and device
- Three types of allocation:
 - Host allocation

- Pointer-based, low-level memory API for handling memory allocations
- Lighter interface than sycl::buffer
- Common address space for both host and device
- Three types of allocation:
 - Host allocation
 - Device allocation

- Pointer-based, low-level memory API for handling memory allocations
- Lighter interface than sycl::buffer
- Common address space for both host and device
- Three types of allocation:
 - Host allocation
 - Device allocation
 - Shared allocation

- Pointer-based, low-level memory API for handling memory allocations
- Lighter interface than sycl::buffer
- Common address space for both host and device
- Three types of allocation:
 - Host allocation
 - Device allocation
 - Shared allocation
- Each allocation suitable for different scenarios

USM benchmark results (1)

UNIVERSITÀ DEGLI STUDI DI SALERNO

USM: Benchmarks

- 1) Task scheduling latency:
 - Measure USM vs Buffer kernel scheduling time
 - Schedule 3 USM or Accessor buffer
 - 50.000 addition kernels
- *2) Host-Device transfers:*
 - Measure USM migration policy
 - Simulate different offloading scenarios
 - Instruction mix: host/device FLOP ratio
- *3) Pinned vs non-pinned memory:*
 - Measure host-device/device-host copy time when using pinned/non-pinned allocations
 - Host/device device/host copies looped

Host-Device benchmark flowchart

USM benchmark results (1)

Specialization constants

- Inject runtime values as constant in device kernel
- Kernel is JIT-compiled and optimized
- Requires recompilation for each specialization constant value change
- Implementation is backend-specific
- Benchmark:
 - Stencil code with *dynamic*, *constexpr*, and *specialization constant* parameters
 - Inner Loop (IL) param to increase computation
- **Rationale:** Measure the impact of const evaluation opt and JIT overhead

```
#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;
static constexpr s::specialization_id<int> C;
```

```
int main(int, char**) {
    constexpr size_t size = 10000;
    queue q{gpu_selector_v};
    std::vector<float> x_vec(size, 1.0f);
    buffer x_buf(x_vec.data());
    range<1> num_items{x_vec.size()};
    q.submit([&](handler& h) {
    h.set_specialization_constant<C>(runtime_value());
    accessor x(x_buf, h, access::read_only);
    h.parallel_for(num_items, [=](item<1> i) {
        int val = h.get_specialization_constant<C>();
        x[i] = val * 0.5f;
      });
    });
```

// ... print results and returns

Atomic

