
SYCL Concurrency on GPU Platforms: Empirical Measurement
Thomas Applencourt 1 Abhishek Bagusetty 1 Ajay Panyala 2 Aksel Alpay 3

1Argonne National Laboratory, 2Pacific Northwest National Laboratory, 3Heidelberg University

Commands which can be scheduled in parallel should/may run faster than the same
commands serialized

A command is a request to execute work that is submitted to a queue such as the invocation of a
SYCL kernel function, the invocation of a host task or an asynchronous copy.

(SYCL 2020 Specification, Glossary)

Overlaps is and optimization and is not required by the specification.

Which Commands can run Concurrently?

1. Multiple Low occupancy kernels
In this paper we use a traditional ”clpeak” kernel (chain of FMA on float (C)) scheduled to use one work‐item

2. Host to Device data‐transfer + Device to Host data‐transfer
In this paper data‐transfer occur between host memory (either allocated via malloc (M), or pinned
memorysycl::malloc_host (H)) and Device Memory (via sycl::malloc_device (D)).
e.g.: H2D, D2M, …

3. Low occupancy kernel + Host to/from Device data‐transfer

This poster aims to report on with conditions different SYCL runtimes achieve concurrency.
Deep explanations of the results are out of the scope of this poster. But we will be more than happy
to discuss low‐level details!

How to Achieve Concurrency?

The SYCL specification allow concurrent execution in two main scenarios:

Out Of Order QueueMultiple SYCL commands submitted in a out of order queue can be
executed concurrently (”OpenCL way”)

1 sycl::queue Q{sycl::gpu_selector()};
2 for (auto& command: commands)
3 do_work(Q,command);
4 Q.wait();
Multiple In Order Queues. Multiple SYCL commands can be submitted in a multiple in‐order
queues. Each queue can be executed concurrently (”CUDA way”)

1 const sycl::device D{sycl::gpu_selector()};
2 const sycl::context C(D);
3 std::vector<sycl::queue> Qs;
4 for (auto& : commands)
5 Qs.push_back(sycl::queue(C, D,sycl::property::queue::in_order{}));
6 for (int i = 0; i < commands.size(); i++)
7 do_work(Qs[i], commands[i]);
8 for (auto &Q : Qs)
9 Q.wait();

Compiler & Drivers Versions Used

ID Compiler Name Commit

i DPCPP 2022.1.0
ii Intel/LLVM 03ff41f
iii Intel/LLVM 1fe5eaa
iv hipSYCL 258dc87

(a) Compiler Versions

ID Drivers Name Version

I Compute Runtime 21.40.21182
II CUDA 11.0.2
III ROCM 4.5.2

(b) Drivers Verions

Result Color Code

Concurrent Execution
Concurrent Execution but Serial Execution when using Profiling enable Queues
Serial Execution

Table 1. Color Scheme Legend

Intel GPU Platform (Iris Pro Graphics 580)

Qs in‐order Q out‐of‐order

C, C

C, M2D
C, D2M
M2D, D2M

C, H2D
C, D2H
H2D, D2H

(c) DPCPP(a) / OpenCL(A)

Qs in‐order Q out‐of‐order

C, C

C, M2D
C, D2M
M2D, D2M

C, H2D
C, D2H
H2D, D2H

(d) DPCPP (i) / L0 (I)

NVDIA Platform (A100)

Qs in‐order Q out‐of‐order

C, C

C, M2D
C, D2M
M2D, D2M

C, H2D
C, D2H
H2D, D2H

(e) Intel/LLVM (ii) / CUDA (II)

Qs in‐order Q out‐of‐order

C, C

C, M2D
C, D2M
M2D, D2M

C, H2D
C, D2H
H2D, D2H

(f) hipSYCL (iv) / CUDA (II)

AMD Platform (MI100)

Qs in‐order Q out‐of‐order

C, C

C, M2D
C, D2M
M2D, D2M

C, H2D
C, D2H
H2D, D2H

(g) Intel/LLVM (iii) / HIP (III)

Qs in‐order Q out‐of‐order

C, C

C, M2D
C, D2M
M2D, D2M

C, H2D
C, D2H
H2D, D2H

(h) hipSYCL (iv) / HIP (III)

Methodology

We run each step N times, and take the minimum time to reduce measurement noise

1. Run commands lists serially. Compute the maximum Theoretical Speedup
max_command_time/total_time_serial
Commands parameters (number of FMA, size of the data‐transfer) are auto‐tuned so that each command take
roughly the same time
By default memory transfers are ”as big as possible” (≈
D.get_info<sycl::info::device::max_mem_alloc_size>())

2. Run the list of commands in a mode who allow concurrency. Compute Empirical Speedup
total_time_concurrent/total_time_serial

3. Verify that Theoretical speedup and Empirical speedup roughly match

Tool Output Example

1 $./sycl_con out_of_order C D2H
2 Performing Autotuning
3 Parameters tunned:
4 tripcount_C: 466765
5 globalsize_D2H: 1073739776
6 Best Total Time Serial: 610271us
7 Best Time Command 0 (C): 303298us
8 Best Time Command 1 (D2H): 306973us
9 Maximum Theoretical Speedup: 1.98803x

10 Best Total Time //: 355451us
11 Speedup Relative to Serial: 1.71689x
12 SUCCESS: Close from Theoretical Speedup

Summary

1. We developed a empirical concurrency testing framework. People are encouraged to use it!
See url in the bottom right of the poster

2. Using ”pinned memory”, sycl::malloc_host, may be required by drivers for concurrency
3. On Intel Platform, L0 need a little more love

Future version Intel/LLVM L0 backend is planned to use immediate command list. Should allow concurrency
is many case.

4. On NVDIA and AMD Platform, hipSYCL delivers most reliable overlap of operations.
Intel/LLVM has a hard time with out‐of‐order queue
Discussion on‐going for Intel/LLVM CUDA,HIP back‐end to implement an M:N mapping between streams and
sycl::queues. This Should help out‐of‐order queues performance.

5. Using profiling queue, via sycl::property::queue::enable_profiling, can impact
concurrency

https://www.iwocl.org/ 10th International Workshop on OpenCL and SYCL https://github.com/argonne-lcf/HPC-Patterns/tree/main/concurency

https://www.iwocl.org/
https://github.com/argonne-lcf/HPC-Patterns/tree/main/concurency

