SYCL Concurrency on GPU Platforms: Empirical Measurement

Thomas Applencourt* Abhishek Bagusetty * Ajay Panyala® Aksel Alpay 3

!Argonne National Laboratory, 2Pacific Northwest National Laboratory, 3Heidelberg University

» Commands which can be scheduled in parallel should/may run faster than the same Result Color Code Methodology
commands serialized . , o , ,
| | I Concurrent Execution We run each step N times, and take the minimum time to reduce measurement noise
A command is a request to execute work that is submitted to a queue such as the invocation of a Concurrent Execution but Serial Execution when using Profiling enable Queues | | | |
SYCL kernel function, the invocation of a host task or an asynchronous copy. J Serial Execution 1. Run commands lists serially. Compute the maximum Theoretical Speedup
(SYCL 2020 Specification, Glossary) max_command_time/total_time_serial
Table 1. Color Scheme Legend = Commands parameters (number of FMA, size of the data-transfer) are auto-tuned so that each command take

roughly the same time
= By default memory transfers are "as big as possible” (~
D.get_info<sycl::info::device: :max mem alloc_size>())

= Overlaps is and optimization and is not required by the specification.

Which Commands can run Concurrently? Intel GPU Platform (Iris Pro Graphics 580)

2. Run the list of commands in a mode who allow concurrency. Compute Empirical Speedup
total_time_concurrent /total_time_serial

1. Multiple Low occupancy kernels

= |n this paper we use a traditional "clpeak” kernel (chain of FMA on t10at (C)) scheduled to use one work-item Qs in-order | Q out-of-order Qs in-order ‘ Q out-of-order 3. Verify that Theoretical speedup and Empirical speedup roughly match
2. Host to Device data-transfer + Device to Host data-transfer C, C C, C _
= |n this paper data-transfer occur between host memory (either allocated via malloc (M), or pinned
memorysycl: :malloc_host (H)) and Device Memory (via sycl: :malloc_device (D)). C, M2D C, M2D Tool OUtPUt Example
e.g.: H2D, D2M, ... C, D2M C, D2M
3. Low occupancy kernel + Host to/from Device data-transfer M2D, DZ2M M2D, D2M
C H2D C H2D 1 $./sycl _con out of order C D2H
This poster aims to report on with conditions different SYCL runtimes achieve concurrency. C, D2H C, D2H :» Performing Autotuning
Deep explanations of the results are out of the scope of this poster. But we will be more than happy H2D, D2H H2D, D2H 3 Parameters tunned:
to discuss low-level details! , 1+ tripcount C: 466765
(c) DPCPP(a) / OpenCL(A) (d) DPCPP (i) / LO (1) 5 globalsize_DZH: 1073739776
How to Achieve Concurrency? ¢ Best Total Time Serial: 610271us
NVDIA Platform (A100) : Best Time Command O (C): 303298us

The SYCL specification allow concurrent execution in two main scenarios: s Best Time Command 1 (D2H): 306973us
o Maximum Theoretical Speedup: 1.98303x

= Out Of Order Queue Multiple SYCL commands submitted in a out of order queue can be Qs in-order | Q out-of-order Qs in-order | Q out-of-order o Best Total Time //: 355451us
executed concurrently ("OpenCL way”) C, C C, C 1 Speedup Relative to Serial: 1.71689x
1 sycl::queue Q{sycl::gpu selector()}; C M2D C. M2D 12 SUCCESS: Close from Theoretical Speedup
> fog (autlc{)ichommandC:l) commands) C: DM C: oM
3 O wWOIr , comman ,
. Quwait() M2D, b2 M2zD, DoM Summary
= Multiple In Order Queues. Multiple SYCL commands can be submitted in a multiple in-order C, H2D C, H2D
queues. Each gueue can be executed concurrently ("CUDA way”) C, D2H C, D2H 1. We developed a empirical concurrency testing framework. People are encouraged to use it!
1 const sycl::device D{sycl::gpu_selector()}; H2b, D2H H2D, D2H See urlin the bottom right of the poster
, const sycl::context C(D); (€) Intel/LLVM (i) / CUDA (Il) (f) hipSYCL (iv) / CUDA (Il 2. Using "pinned memory”, sycl: :malloc_host, may be required by drivers for concurrency
; std: :vector<sycl::queue> Qs; 3. On Intel Platform, LO need a little more love
+ for (auto& : commands) AMD Platform (MI100) o Future version Intel/LLVM LO backend is planned to use immediate command list. Should allow concurrency
5 Qs.push_back(sycl::queue(C, D,sycl::property::queue::in_order{})); IS many case. |
¢ for (int i = 0; i < commands.size(); i++) 4. On NVDIA and AMD Platform, hipSYCL delivers most reliable overlap of operations.
. do work(Qs[i], commands[il);: Qs in—order\Q out-of-order Qs in—order\Q out-of-order Intel/LLVM has a hard time with out-of-order queue
P ’ ’ = Discussion on-going for Intel/LLVM CUDA,HIP back-end to implement an M:N mapping between streams and
f (auto &0 : Qs)
P Eor au(;) F B C, C _ C, C sycl: :queues. This Should help out-of-order queues performance.
9 .walit(); . _ . .
4w C, M2D C, M2D 5. Using profiling queue, via sycl: :property: :queue: :enable profiling, can impact
C, D2M C, D2M concurrency
Compiler & Drivers Versions Used M2D, D2M M2D, D2M
C, H2D C, H2D
ID Compiler Name Commit . . C, D2H C, D2H
ID Drivers Name Version HoD. D2H HoD. D2H
;i IEr)wi)eCI/PLFI)_\/I\/I éggéllfo | Compute Runtime 21.40.21182 (g) Intel/LLVM (i) / HIP (11l (h) hipSYCL (iv) / HIP (I1I)
i Intel/LLVM 1feSeaa 1 CUDA 11.0.2
Il ROCM 45.2

v hipSYCL 2538dc87/

(a) Compiler Versions

(b) Drivers Verions

https./”/www.lwocl.org/ 10th International Workshop on OpenCL and SYCL https.//github.com/argonne-lct/HPC-Patterns/tree/main/concurency

https://www.iwocl.org/
https://github.com/argonne-lcf/HPC-Patterns/tree/main/concurency

