

•  Methodology overview
 Hybridization of Linear Algebra Algorithms
 Use both GPUs and multicore CPUs

•  clMAGMA
 OpenCL port of MAGMA
  Performance results
 Challenges and future directions

•  Conclusions

[AMD APPML -- Accelerated Parallel Processing Math Libraries 
 http://developer.amd.com/libraries/appmathlibs/]

MAGMA 1.3 Hybrid Tile (PLASMA) Algorithms

single

multi

distr.

C P U G P U H Y B R I D

MAGMA BLAS

Linux, Windows, Mac OS X ¦ C/C++, Fortran ¦ Matlab, Python

MAGMA SPARSE

clMAGMA 1.0

 MAGMA 1.3 Hybrid LAPACK Algorithms and Tile Kernels

Hybrid LAPACK / ScaLAPACK & Tile Algorithms / StarPU / DAGuE

GPU: Tahiti (AMD Radeon HD 7900)
 264 GB/s memory bandwidth
 3.79 Tflop/s SP, 947 Gflop/s DP
 32 x 64 (2048 stream proc.)

Kazuya Matsumoto, Naohito Nakasato, Stanislav G.Sedukhin, Implementing a Code Generator
for Fast Matrix Multiplication in OpenCL on the GPU, University of Aizu, Japan, July 2, 2012.

A methodology to use all available resources:
  MAGMA uses HYBRIDIZATION methodology based on

–  Representing linear algebra algorithms as collections
of TASKS and DATA DEPENDENCIES among them

–  Properly SCHEDULING tasks' execution over
multicore and GPU hardware components

  Successfully applied to fundamental
 linear algebra algorithms

–  One and two-sided factorizations and solvers
–  Iterative linear and eigen-solvers

  Productivity
–  1) High-level; 2) Leveraging prior developments; 3) Exceeding in performance homogeneous solutions

Hybrid CPU+GPU algorithms 
(small tasks for multicores and  
large tasks for GPUs)

One-sided factorizations (LU, QR, Cholesky)
•  Hybridization

  Panels (Level 2 BLAS) are factored on CPU using LAPACK
  Trailing matrix updates (Level 3 BLAS) are done on the GPU

using “look-ahead”

  Left-looking hybrid Cholesky factorization in clMAGMA

 1 for (j=0; j<n; j += nb) {
 2 jb = min(nb, n – j);
 3 magma_zherk(MagmaUpper, MagmaConjTrans, jb, j, m_one, dA(0, j), ldda, one, dA(j, j), ldda, queue);
 4 magma_zgetmatrix_async(jb, jb, dA(j,j), ldda, work, 0, jb, queue, &event);
 5 if (j+jb < n)
 6 magma_zgemm(MagmaConjTrans, MagmaNoTrans, jb, n-j-jb, j, mz_one,
 7 dA(0, j), ldda, dA(0, j+jb), ldda, z_one, dA(j, j+jb), ldda, queue);
 8 magma_event_sync(event);
 9 lapackf77_zpotrf(MagmaUpperStr, &jb, work, &jb, info);
10 if (*info != 0)
11 *info += j;
12 magma_zsetmatrix_async(jb, jb, work, 0, jb, dA(j,j), ldda, queue, &event);
13 if (j+jb < n) {
12 magma_event_sync(event);
13 magma_ztrsm(MagmaLeft, MagmaUpper, MagmaConjTrans, MagmaNonUnit,
14 jb, n-j-jb, z_one, dA(j, j), ldda, dA(j, j+jb), ldda, queue);
15 }
16 }

 The difference with LAPACK – the 4 additional lines in red
 Line 9 (done on CPU) is overlapped with work on the GPU (from line 6)

Host program

OpenCL interface ‒ communications

OpenCL interface ‒ AMD APPML BLAS

Host program

Two-sided factorizations (Hessenberg, bi-, and
tridiagonalization)

•  Hybridization
  Panels (Level 2 BLAS) are also hybrid, using both

CPU & GPU (vs. just CPU as in the one-sided factorizations)
  Trailing matrix updates (Level 3 BLAS) are done on the GPU

using “look-ahead”

1. Copy dP to CPU

2. Copy v to GPU
j

4. Copy to CPU

Work dWork

dYY dV

0
C P U G P U

i

3. Copy y to CPU
j

Aj

  Conceptually similar to out-of-order processor scheduling
 because it has:
– Dynamic runtime DAG scheduler
– Out-of-order execution flow of fine-grained tasks
– Task scheduling as soon as dependencies are satisfied
– Producer-Consumer

  Data Flow Programming Model
– The DAG approach
– Scheduling is data driven
– Inherently parallel

 From Sequential Nested-Loop Code to Parallel Execution:

 for (k = 0; k < min(MT, NT); k++){
 zgeqrt(A[k;k], ...);
 for (n = k+1; n < NT; n++)
 zunmqr(A[k;k], A[k;n], ...);
 for (m = k+1; m < MT; m++){
 ztsqrt(A[k;k],,A[m;k], ...);
 for (n = k+1; n < NT; n++)
 ztsmqr(A[m;k], A[k;n], A[m;n], ...);
 }

}

 From Sequential Nested-Loop Code to Parallel Execution:

 for (k = 0; k < min(MT, NT); k++){
 Insert_Task(&zgeqrt, k , k, ...);
 for (n = k+1; n < NT; n++)
 Insert_Task(&zunmqr, k, n, ...);
 for (m = k+1; m < MT; m++){
 Insert_Task(&ztsqrt, m, k, ...);
 for (n = k+1; n < NT; n++)
 Insert_Task(&ztsmqr, m, n, k, ...);
 }

}

•  Overlap CPU work, GPU work, and
CPU-GPU communications
A dgetrf trace example

Black ‒ panel Red ‒ dgemm Green ‒ dtrsm Gray / Yellow ‒ dset / dget

•  Benchmarks to discover OpenCL specifics

Latencies to launch a kernel

•  Important to have for both dense and certain sparse
linear system and eigen-problem solvers

•  Can we factor panels faster on GPU as panels are
memory bound?

•  Latencies may be a bottleneck
  e.g., 64 columns panel would require the invocation of ~400 kernels

 Performance of QR panels in double precision  
 on Kepler (in CUDA), Tahiti (in OpenCL), and 16 Intel Sandy Bridge cores

Difference is due to latencies (in our software/hardware
 configuration) as shown by increasing the problem size.

  A hybrid methodology and its application to DLA using OpenCL

  clMAGMA: LAPACK for heterogeneous computing
– Achieving high-performance linear algebra using OpenCL
– clMAGMA 1.0 includes the main

–  one- and two-sided factorizations
–  orthogonal transformation routines
–  linear and eigen-problem solvers

  What is next?
– Further performance/efficiency improvements
–  MultiGPU and distributed environments

•  MAGMA [Matrix Algebra on GPU
and Multicore Architectures] team
http://icl.cs.utk.edu/magma/

•  PLASMA [Parallel Linear Algebra
for Scalable Multicore
Architectures] team
http://icl.cs.utk.edu/plasma

•  Collaborating Partners
 University of Tennessee, Knoxville
 University of California, Berkeley
 University of Colorado, Denver

 INRIA, France
 KAUST, Saudi Arabia

