
Embedding a DSL in SYCL for Productive and Performant Tensor

Computing on Heterogeneous Devices

Abenezer Wudenhe

University of California, Riverside

Parallel Computing Lab, Intel

2022 1

T2S code

2

Overview of T2S

• A constructive programming approach for spatial architectures (e.g. FPGAs) and
vector architectures (e.g. GPUs)

Intermediate
Representation (IR) LLVM code

OpenCL HLS
code

CPU

Intel
(Altera)

AOC
compiler

FPGA

SYCL
Code

DPC++
compiler

GPU

CPU

FPGAFPGA

Integrating T2S with SYCL

Other
code

Preprocessor (transparent to user)

T2S spec

T2S compiler

Normal DPC++ compile flow

standard SYCL code
via Intel OneAPI

method(s)

Fat binary

Standard SYCL code

3

Integrating T2S with SYCL

4

Integrating T2S with SYCL

5

User-managed Caches

Systolic Array

User-managed Caches

Output Data

Output
Drainer/Collector/Unloader
Channels

Input Loader/Feeder
Channels

Input Data

Integrating T2S with SYCL

6

Unified programming model: T2S

7

Defining Inputs

Defining Parameters

8

Unified programming model: T2S

Uniform recurrence equations

Space-time transform

SIMT

9

Unified programming model: T2S

Abstract memory hierarchy

Generate OneAPI/SYCL Code

10

OneAPI Code Generator

• const std::vector<Argument> &: A set of inputs to the Func or Stensor pipeline stage

• const std::string & fn_name: Name of the compiled function and file prefix

• const Target & target: Set of Halide Targets

• i.e Target::IntelFPGA or Target::IntelGPU

Integrating T2S with OneAPI and SYCL

11

Integrating T2S with OneAPI and SYCL

12

Included OneAPI generated
GEMM header file

Wrapped input argument
inside T2SP DSL structures

Define OneAPI FPGA
device selector

Execute generated GEMM
function

13

Integrating T2S

1. Wrapper

2. Host/Device Kernels

3. Memory Management

4. Performance Metrics

1. Wrapper
2. Host/Device Kernels
3. Memory Management
4. Performance metrics

14

Integrating T2S

• Generated GEMM code takes in 2 types of arguments

§ sycl::ext::intel::fpga_selector device_selector

§ Used to either use FPGA emulation or synthesize to real hardware
§ Halide::Runtime::Buffer

§ T2SP’s Halide Runtime Buffers. Used to manage device and host memory
copies and management

1. Wrapper
2. Host/Device Kernels
3. Memory Management
4. Performance metrics

15

Integrating T2S

• Host Kernels

• Host kernels are executed as normal C++ code on host memory

• Device Kernels

• Device kernels are submitted into device queues and kernel events are recorded in
a std::vector for performance analysis at the completion of the application

1. Wrapper
2. Host/Device Kernels
3. Memory Management
4. Performance metrics

16

Integrating T2S

• Memory management

• Device and Host memory are allocated
though sycl::malloc_device() and
std::malloc() respectively

• Memory copies (memcpy) are explicit and
executed depending on the memory
operation of that kernel

• If kernel requires load operation,
memcpy host->device before kernel
submission

• If kernel requires store operation,
memcpy device->host after kernel
execution is complete

• SYCL Pipes are used to communicate
between data between kernels on the device

• Currently there is no implement of device-
to-device memory copies

1. Wrapper
2. Host/Device Kernels
3. Memory Management
4. Performance metrics

17

Integrating T2S

• The generated returns a double value of the kernel execution time i.e. from the
earliest start to the latest end of the device kernels

1. Wrapper
2. Host/Device Kernels
3. Memory Management
4. Performance metrics

19

Recorded demo: T2S Full Compiling Flow
GEMM

20

Experiments/Results

• Benchmark Applications

• General Matrix Multiply (GEMM)

• 2-D convolution (CONV)

• Capsule convolution (CAPSULE)

21

Experiments/Results

• GEMM/CONV/CAPSULE FPGA Synthesis Results for OpenCL and Generated OneAPI

Benchmark ALUT Registers DSP blocks RAM Blocks Clock Freq.

GEMM 105151 180,874 89 / 1,518 (6 %) 462 / 2,713 (17 %) 264

CONV 98648 168,673 64 / 1,518 (4 %) 499 / 2,713 (18 %) 276

CAPSULE 119038 198,909 112 / 1,518 (7 %) 607 / 2,713 (22 %) 275

22

Experiments/Results

• GEMM/CONV/CAPSULE FPGA Performance results for OpenCL and Generated OneAPI

Benchmark GFLOPS

GEMM 302.402
CONV 285.301

CAPSULE 231.877

23

Conclusion

• Expanding Intel’s T2SP to leverage SYCL implementation to extend the T2SP domain
specific language to one uniform compiling flow for agnostic hardware acceleration

• Developed Code generator to produce SYCL Device & Host Code

• Implemented Clang source-to-source code for file preprocessing

• FPGA implementation is able to non-trivial performance

24

Future Work

• Investigation as to performance bottlenecks to achieve faster tensor computing

• Extend to GPU, CPU, and other tensor computing accelerators

