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T2S code

2

Overview of T2S

• A constructive programming approach for spatial architectures (e.g. FPGAs) and 
vector architectures (e.g. GPUs)
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Integrating T2S with SYCL
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Integrating T2S with SYCL
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Integrating T2S with SYCL
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Integrating T2S with SYCL
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Unified programming model: T2S
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Defining Inputs

Defining Parameters
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Unified programming model: T2S

Uniform recurrence equations

Space-time transform

SIMT
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Unified programming model: T2S

Abstract memory hierarchy

Generate OneAPI/SYCL Code
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OneAPI Code Generator

• const std::vector<Argument> &: A set of inputs to the Func or Stensor pipeline stage

• const std::string & fn_name: Name of the compiled function and file prefix

• const Target & target: Set of Halide Targets

• i.e Target::IntelFPGA or Target::IntelGPU



Integrating T2S with OneAPI and SYCL
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Integrating T2S with OneAPI and SYCL
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Included OneAPI generated 
GEMM header file

Wrapped input argument 
inside T2SP DSL structures

Define OneAPI FPGA 
device selector 

Execute generated GEMM 
function



13

Integrating T2S

1. Wrapper

2. Host/Device Kernels 

3. Memory Management

4. Performance Metrics

1. Wrapper
2. Host/Device Kernels 
3. Memory Management
4. Performance metrics
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Integrating T2S

• Generated GEMM code takes in 2 types of arguments

§ sycl::ext::intel::fpga_selector device_selector

§ Used to either use FPGA emulation or synthesize to real hardware
§ Halide::Runtime::Buffer

§ T2SP’s Halide Runtime Buffers. Used to manage device and host memory 
copies and management

1. Wrapper
2. Host/Device Kernels 
3. Memory Management
4. Performance metrics
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Integrating T2S

• Host Kernels

• Host kernels are executed as normal C++ code on host memory

• Device Kernels

• Device kernels are submitted into device queues and kernel events are recorded in 
a std::vector for performance analysis at the completion of the application

1. Wrapper
2. Host/Device Kernels 
3. Memory Management
4. Performance metrics
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Integrating T2S

• Memory management 

• Device and Host memory are allocated 
though sycl::malloc_device() and 
std::malloc() respectively

• Memory copies (memcpy) are explicit and 
executed depending on the memory 
operation of that kernel

• If kernel requires load operation, 
memcpy host->device before kernel 
submission

• If kernel requires store operation, 
memcpy device->host after kernel 
execution is complete

• SYCL Pipes are used to communicate 
between data between kernels on the device

• Currently there is no implement of device-
to-device memory copies 

1. Wrapper
2. Host/Device Kernels 
3. Memory Management
4. Performance metrics
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Integrating T2S

• The generated returns a double value of the kernel execution time i.e. from the 
earliest start to the latest end of the device kernels

1. Wrapper
2. Host/Device Kernels 
3. Memory Management
4. Performance metrics
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Recorded demo: T2S Full Compiling Flow
GEMM
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Experiments/Results

• Benchmark Applications

• General Matrix Multiply (GEMM)

• 2-D convolution (CONV)

• Capsule convolution (CAPSULE)
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Experiments/Results

• GEMM/CONV/CAPSULE FPGA Synthesis Results for OpenCL and Generated OneAPI

Benchmark ALUT Registers DSP blocks RAM Blocks Clock Freq.

GEMM 105151 180,874 89 / 1,518 ( 6 % ) 462 / 2,713 ( 17 % ) 264

CONV 98648 168,673 64 / 1,518 ( 4 % ) 499 / 2,713 ( 18 % ) 276

CAPSULE 119038 198,909 112 / 1,518 ( 7 % ) 607 / 2,713 ( 22 % ) 275
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Experiments/Results

• GEMM/CONV/CAPSULE FPGA Performance results for OpenCL and Generated OneAPI

Benchmark GFLOPS

GEMM 302.402
CONV 285.301

CAPSULE 231.877
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Conclusion

• Expanding Intel’s T2SP to leverage SYCL implementation to extend the T2SP domain 
specific language to one uniform compiling flow for agnostic hardware acceleration 

• Developed Code generator to produce SYCL Device & Host Code

• Implemented Clang source-to-source code for file preprocessing

• FPGA implementation is able to non-trivial performance
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Future Work

• Investigation as to performance bottlenecks to achieve faster tensor computing

• Extend to GPU, CPU, and other tensor computing accelerators 


