Untangling Modern Parallel
Programming Models

intel.

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details.
No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, Xeon, Core, VTune, OpenVINO, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Khronos and the Khronos Group logo are trademarks
of the Khronos Group Inc. in the U.S. and/or other countries. OpenCL and the OpenCL logo are trademarks of Apple Inc. in the U.S. and/or other countries. SYCL and the SYCL logo are trademarks of the

Khronos Group Inc. in the U.S. and/or other countries. SPIR and the SPIR logo are trademarks of the Khronos Group Inc. in the U.S. and/or other countries.
Other names and brands may be claimed as the property of others.

SYCLCon'22 intel. 2

Motivation

= [oday's workloads target a rich diversity of hardware:

FPGA Others

» Modern hardware exposes multiple types of parallelism

= Programming across architectures is a challenge

= |_anguage abstractions aim to ease the burden

SYCLCon'22 intel. ‘3

T opics

1. Scope
2. Mapping to hardware

* Programming model

= [oolchain
3. Languages/frameworks
4. Composing models

5. Takeaways

~
SYCLCon22 inte|®‘ Mg

Getting on the same page

=

intel.

Focus of presentation

Broad Breakdown of Parallelism™

* Messy topic with conflicting definitions and philosophies

= First, think in terms of streams of instructions (or programs)

= Program A and Program B running on different processor cores

- Differentinstructions streams in parallel

SYCLCon"22

e.g.CPU

(Core

Core

Task Parallelism

E.g.: Cores in a multi-core CPU

\

Program A] Program B]

J

intel. " “¢

* Messy topic with conflicting definitions and philosophies

Broad Breakdown of Parallelism* (2)

= Then, think of parallelism inside a single instruction stream (program)

= e.g.vectorinstructions

e.g. CPU
Core Core
Vector Operations Vector Operations
voo [T I TR T TT] voo L LTI T L]
YYYRYES.
| A

Data Parallelism

- “Perform operation X ondata A,B,C,...”

. N
SYCLCon22 intel. 7

Broad Breakdown of Parallelism (3)

= Data parallelismincludes loop vectorization, pipeline parallelism, others

[This talk covers expression of data (not task or other) parallelism]

%

Data Parallelism

- “Perform operation X ondata A,B,C,...”

SYCLCon'22 intel. s

Reminder: Vector hardware instructions

C=ADDAB

CyAB,

C=Ay*B,

Cs=As*B;

C,=A,*B,

Cs=As*Bsg

Ce=ActBg

C=A*B;

Vectors

= Vector instructions exist in many throughput-centric architectures today

» Question: How do we write programs to leverage data parallelism hardware?

SYCLCon"22

= Multiple components / elements in a single operation

= May appear as vector instructions in assembly/machine code

i |
intel.

No

Mapping to hardware

Part . The programming model

=

intel.

Using vector hardware

Single Instruction Multiple Data (SIMD):

Explicit SIMD

// Vector addition
| _» C8 = a8 + b8;

Vector variables, each with Often ~direct
8 elements / components mapping

A

Vector HW

Single “work-item” of code creates work
to fill vector hardware

SYCLCon"22

intel.

*

Using vector hardware (2)

SYCLCon"22

Single Program Multiple Data (SPMD¥):

SPMD

C[id] = a[id] + b[id];]

Compiler or hardware maps
work-items to vector HW

Vector HW

Multiple work-items populate lanes
that may map to vector hardware

* Also called SIMT and other names

intel. 12

Using vector hardware (3)

[Add in Single Instruction Single Data (SISD)]

SISD ‘

for (i=0; i<8; i++) {
c[i] = a[i] + b[i];

Vectorizer\

'd N

}

Vector HW

Single “work-item” of code creates work
to fill vector hardware

SYCLCon"22

intel.

13

Common ways to access vector hardware

SISD

Explicit SIMD

for (i=0; i<8; i++) {
c[i] = a[i] + b[i];
}

// Vector addition
c8 = a8 + bS8;

Vectorizer\

Often ~direct
mapping

'd

N

Vector HW

SISD:

Explicit SIMD:

» Easy for sequential coders ¢ Direct control over hardware

 Automaton or directives
fit in well

SYCLCon"22

« Often 1:1 mapping
* Direct cross-lane operations

SPMD
C[id] = a[id] + b[id];]

Compiler or hardware maps
work-items to vector HW

Vector HW

SPMD:

* More portable across architectures / generations
« Easier to reason about how to write correct code
* Details like masking handled by toolchain

intel. ‘4

Takeaway #1

4)
SPMD code is often more portable across
architectures/generations, and for many is an easier
8 mental model (independent work-items))

SPMD
C[id] = a[id] + b[id];]

SPMD even maps cleanly to
pipeline parallelism (e.g. FPGA)

SYCLCon"22

SPMD

C[id] = a[id] + b[id];]

SPMD

C[id] = a[id] + b[id];]

intel. 5

Mapping to hardware
Part 2: The toolchain’s mapping

=

intel.

Two competing vector mapping options

float4 sum = 3.0 + tempz;]

Vi

4-lane vector HW unit

An option: Vector in code maps to SIMD hardware

= Asked for by expert developers targeting specific HW
= | ike assembly/intrinsics in higher level language

= Sometimes called “explicit SIMD”

Does not integrate trivially with multi-work-item
SPMD ND-range model =2

SYCLCon'22 intel. © M7

Two competing vector mapping options (2)

float4 sum = 3.0 + tempz;]

\ 8-lane vector HW unit

l Instruction cycles / time

An option: Vector in code maps to single lane over “time”

= Nottied to specific hardware
= Potentially portable to all hardware
» QOrdering between work-items not specified = freedom

» Compiler deals with masking for inactive lanes

Sub-groups in OpenCL/SYCL enable the other
(horizontal) view for performance tuning/reasoning @)

. N (S
SYCLCon'22 intel. Vs

Takeaway #2

-

~
Languages/standards often don't define mappings to

hardware (intentionally). To achieve performance,
need to understand how the tools interpret code.

floatd4 sum = 3.0 + temp2;

Tools decide what a vector means \ LLi=|I=H=|I=H

SISD Explicit SIMD SPMD
for (i0; i<8; 1++) () [/ yoctor agaition | [clid] = alid] + brid];]
. c[i] = ali] + b[il;] | ‘g _ s + b
Even the difference between SPMD and } ’
explicit SIMD is an interpretation detall \ /

A

' d N

SYCLCon22 intel. ‘1

Sub-groups in SYCL / OpenCL

= Pure SPMD abstraction missing expressibility around cross-lane hardware

= Work-items inisolated lanes by design

= SGs map to what can be vector hardware — enables cross-lane collective operations

Work-

group — |

Sub-group decomposition of
work-group

Global work size —

Work-item —

SYCLCon"22

-

Sub-group
(size=2)

SYCL 2020 sub-group algorithms

sycl

auto
auto
auto
auto

::sub_group sg = it.get sub _group();

QN oCow

sycl::
sycl::
sycl::
sycl::

shift _group left(sg, x, 1);
shift group right(sg, x, 1);
select from group(sg, x, id);

permute_group by xor(sg, x, mask);

N

i N o
intel. 20

Some common programming
languages/frameworks

=

intel.

| anguages/frameworks vary in model and mapping

Cross-lane Cross-lane
abstraction communication

Interpretation of vector types

 sycl:marray for intra work-item i :

SYCL SPMD Future std::simd alignment for SIMD Sub-group Group algorithms
OpenCL SPMD Not spec mandated. Implementers interpret Sub-group Sub-group functions
CUDA SPMD (SIMT) Intra work-item* Warp Cooperative group,

intrinsics
OpenMP SISD + SPMD No vector types defined in specification Impls;rf\iir:jtlon N/A
Kokkos SPMD Math convenience type, SIMD math wrappers Nested parallelism Algorithms

*Some explicit SIMD ops with data type re-interpretziion

SYCLCon'22 inte|®‘ N2

Composing programming models

=

intel.

—xperimental: Stepping across execution models

= Occasionally, experts want to code directly to an architecture (small % of code)

= More control over compiler, working around bugs, or use of new hardware features

= Working on proving ground extension to compose programming models
= Composition of models with clear boundaries / semantics / type safety

= Coherently incorporates concepts from other programming models (e.g. ISPC, OpenMP)

—
b

-~
SYCLCon22 inte|®‘ N24

Enabling composition: “Invoke SIMD” extension

namespace ex = sycl::ext::oneapi::experimental;

ex::simd<float, 8> scaleﬂex::simd<float, 8> x, float n) {
return x * n;
}

g.parallel for(..., sycl::nd item<1> it) [[sycl::reqd _sub_group size(8)]] {
sycl::sub_group sg = it.get _sub_group();
float x e
float n e

// Invoke SIMD function - x values from each work-item are combined into a simd<float, 8>
float y = ex::invoke simd(sg,| scale,| x, ex::uniform(n));

})s f

In callee, switch from SPMD to explicit SIMD execution
context (SIMD with respect to sub-group sg)

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/proposed/sycl_ext_oneapi_invoke_simd.asciidoc

SYCLCon22 intel. ‘25

Enabling composition: “Invoke SIMD” extension (2)

float y = ex::invoke_simd(sg, scale, x, ex::uniform(n));

// Invoke SIMD function - x values from each work-item combined into simd<float, 8>\‘

SPMD

Program | c[id] = a[id] + b[id];]

Execution l%%_l
SIMD
invoke simd // Vector instruction}
c8 = a8 + bs; SIMD content could

i ~— be intrinsics or even
~ N a different language
SPMD

‘ c[id] = a[id] + b[id];]

TN

SYCLCon22 intel. 2

Takeaway #3

Pure models can have gaps in portability or performance.
Step outside the model in consistent, well-defined ways.

Sub-group decomposition of work-group

Sub-groups add concept of ganged lanes
and collective operations to SPMD model

T~ Sub-group
(size=2)

Invoke_simd extension enables coding directly
to architecture in small % of code, when needed

SYCLCon"22

c[id] = a[id] + b[id];

[t
G

SIMD

// Vector instruction
c8 = a8 + bs8;

X

c[id] = a[id] + b[id];

T

intel. 27

Non-scalar lanes and recap

=

intel.

Reality: Vector “lanes” are not always scalar

Hybrid: Work-item uses >1 vecto

SPMD
ca[id] = a4[id] + ba[id];]

Vector HW

rlane Hybrid: Explicit vector width > #vector lanes

SIMD
c16[id] = a16[id] + bie[id];]

/

Vector HW

l Time

Special case: Some instructions do vector operations in a “lane”
SPMD

c2[id] = a2[id] + bz[id];]

SYCLCon"22

I Vector HW that sometimes

| | has non-scalar lanes

intel. 2

Recap — key mappings to hardware

Style 1: SPMD mapping

SPMD
ca[id] = a4[id] + b4[id];]

Multiple work-items
fill vector HW lanes

Vector HW

lTime

AN

Vector unrolled across time in
single “lane”

marray added to SYCL 2020 for this!

SYCLCon22 inteL‘ N30

Recap — key mappings to hardware (2)

Style 1: SPMD mapping

SPMD
ca[id] = a4[id] + b4[id];]

Multiple work-items
fill vector HW lanes

Vector HW

lTime

N\

Vector unrolled across time in
single “lane”

marray added to SYCL 2020 for this!

SYCLCon"22

Style 2: SPMD with sub-groups

Sub-group decomposition of
work-group

Sub-group
ot (size=4)

Sub-group maps to vector HW

Vector HW

Sub-group represents SIMD width, gives
representation for collective operations

This is why SG exist in SYCL 2020

intel. * 3

Recap — key mappings to hardware (3)

Style 1: SPMD mapping

SPMD
ca[id] = a4[id] + b4[id];]

Multiple work-items
fill vector HW lanes

Vector HW

lTime

N\

Vector unrolled across time in
single “lane”

marray added to SYCL 2020 for this!

SYCLCon"22

Style 2: SPMD with sub-groups

Sub-group decomposition of
work-group

Sub-group
(size=4)

»

Sub-group maps to vector HW

Vector HW

Sub-group represents SIMD width, gives
representation for collective operations

This is why SG exist in SYCL 2020

Style 3a: SPMD with explicit SIMD
coding in special code regions

SPMD

C[id] = a[id] + b[id];]

SIMD

// Vector instruction

c8=i8+b8,'
SPMDf EF EEEEEE

Cc[id] = a[id] + b[id];]

T

Vectors in language explicitly map
(non-portably) to vector HW

intel, ~ Y32

Recap — key mappings to hardware (4)

Style 1: SPMD mapping Style 2: SPMD with sub-groups j Style 3a: SPMD with explicit SIMD
coding in special code regions
SPMD Sub-group decomposition of ST;D] o b[_d]_]
calid] = a4[id] + ba[id];] work-group ﬁ??%‘l
SIMD
MUl.t|p|.e WOI’k-ItemS Sub-group w // Vector instr‘uction]
fill vector HW lanes 4 (size=4) c8 - ?8 * fi
SPMDf (T
Vector HW C[id] = a[id] + b[id];]
Time Sub-group maps to vector HW Vectors inlanguage explicitly map
(non-portably) to vector HW
\ VectorHw F e
Vector unrolled across time in Style 3b: Full kernel explicit SIMD
single “lane” Sub-group represents SIMD width, gives SIMD
representation for collective operations my_explicit SIMD kernel (...) {
marray added to SYCL 2020 for this! This is why SG exist in SYCL 2020 cs = a8 + b8; } 1

SYCLCon'22 intel. ™ ‘a3

T akeaways

SPMD

C[id] = a[id] + b[id];]

1. SPMD: Improves portability + an easier mental model

2- Performance = -Floa’t\4 sum = 3.0 + temp2;
N

Programming model + Toolchain interpretation D:é %

3. Pure models create gaps in portability or performance ER[EE
. . . . D]D] Sub-group
= Must occasionally step outside model. Do so in a consistent, OO Gize2)
well-defined framework LLICT]

SYCLCon'22 intel. ™ ‘a4

