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Motivation

= [oday's workloads target a rich diversity of hardware:

FPGA Others

» Modern hardware exposes multiple types of parallelism

= Programming across architectures is a challenge

= |_anguage abstractions aim to ease the burden
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Getting on the same page

=
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Broad Breakdown of Parallelism™

* Messy topic with conflicting definitions and philosophies

= First, think in terms of streams of instructions (or programs)

= Program A and Program B running on different processor cores

- Differentinstructions streams in parallel
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e.g.CPU

( Core

Core

Task Parallelism

E.g.: Cores in a multi-core CPU

\

Program A ] Program B ]

J
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* Messy topic with conflicting definitions and philosophies

Broad Breakdown of Parallelism* (2)

= Then, think of parallelism inside a single instruction stream (program)

= e.g.vectorinstructions

e.g. CPU
Core Core
Vector Operations Vector Operations
voo [ T I TR T TT ] voo L LTI T L]
YYYRYES.
| A

Data Parallelism

- “Perform operation X ondata A,B,C,...”

. N
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Broad Breakdown of Parallelism (3)

= Data parallelismincludes loop vectorization, pipeline parallelism, others

[ This talk covers expression of data (not task or other) parallelism ]

%

Data Parallelism

- “Perform operation X ondata A,B,C,...”
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Reminder: Vector hardware instructions

C=ADDAB

CyAB,

C=Ay*B,

Cs=As*B;

C,=A,*B,

Cs=As*Bsg

Ce=ActBg

C=A*B;

Vectors

= Vector instructions exist in many throughput-centric architectures today

» Question: How do we write programs to leverage data parallelism hardware?
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= Multiple components / elements in a single operation

= May appear as vector instructions in assembly/machine code

i |
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Mapping to hardware

Part . The programming model

=
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Using vector hardware

Single Instruction Multiple Data (SIMD):

Explicit SIMD

// Vector addition
| _» C8 = a8 + b8;

Vector variables, each with Often ~direct
8 elements / components mapping

A

Vector HW

Single “work-item” of code creates work
to fill vector hardware

SYCLCon"22
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Using vector hardware (2)

SYCLCon"22

Single Program Multiple Data (SPMD¥):

SPMD

C[id] = a[id] + b[id];]

Compiler or hardware maps
work-items to vector HW

Vector HW

Multiple work-items populate lanes
that may map to vector hardware

* Also called SIMT and other names
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Using vector hardware (3)

[Add in Single Instruction Single Data (SISD)]

SISD ‘

for (i=0; i<8; i++) {
c[i] = a[i] + b[i];

Vectorizer\

'd N

}

Vector HW

Single “work-item” of code creates work
to fill vector hardware

SYCLCon"22
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Common ways to access vector hardware

SISD

Explicit SIMD

for (i=0; i<8; i++) {
c[i] = a[i] + b[i];
}

// Vector addition
c8 = a8 + bS8;

Vectorizer\

Often ~direct
mapping

'd

N

Vector HW

SISD:

Explicit SIMD:

» Easy for sequential coders ¢ Direct control over hardware

 Automaton or directives
fit in well

SYCLCon"22

« Often 1:1 mapping
* Direct cross-lane operations

SPMD
C[id] = a[id] + b[id];]

Compiler or hardware maps
work-items to vector HW

Vector HW

SPMD:

* More portable across architectures / generations
« Easier to reason about how to write correct code
* Details like masking handled by toolchain
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Takeaway #1

4 )
SPMD code is often more portable across
architectures/generations, and for many is an easier
8 mental model (independent work-items) )

SPMD
C[id] = a[id] + b[id];]

SPMD even maps cleanly to
pipeline parallelism (e.g. FPGA)
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SPMD

C[id] = a[id] + b[id];]

SPMD

C[id] = a[id] + b[id];]
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Mapping to hardware
Part 2: The toolchain’s mapping

=
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Two competing vector mapping options

float4 sum = 3.0 + tempz;]

Vi

4-lane vector HW unit

An option: Vector in code maps to SIMD hardware

= Asked for by expert developers targeting specific HW
= | ike assembly/intrinsics in higher level language

=  Sometimes called “explicit SIMD”

Does not integrate trivially with multi-work-item
SPMD ND-range model =2
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Two competing vector mapping options (2)

float4 sum = 3.0 + tempz;]

\ 8-lane vector HW unit

l Instruction cycles / time

An option: Vector in code maps to single lane over “time”

= Nottied to specific hardware
= Potentially portable to all hardware
»  QOrdering between work-items not specified = freedom

»  Compiler deals with masking for inactive lanes

Sub-groups in OpenCL/SYCL enable the other
(horizontal) view for performance tuning/reasoning @)

. N (S
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Takeaway #2

-

~
Languages/standards often don't define mappings to

hardware (intentionally). To achieve performance,
need to understand how the tools interpret code.

floatd4 sum = 3.0 + temp2;

Tools decide what a vector means \ LLi=|I=H=|I=H

SISD Explicit SIMD SPMD
for (i0; i<8; 1++) () [/ yoctor agaition | [ clid] = alid] + brid];]
. c[i] = ali] + b[il;] | ‘g _ s + b
Even the difference between SPMD and } ’
explicit SIMD is an interpretation detall \ /

A

' d N
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Sub-groups in SYCL / OpenCL

= Pure SPMD abstraction missing expressibility around cross-lane hardware

= Work-items inisolated lanes by design

= SGs map to what can be vector hardware — enables cross-lane collective operations

Work-

group — |

Sub-group decomposition of
work-group

Global work size —

Work-item —

SYCLCon"22

-

Sub-group
(size=2)

SYCL 2020 sub-group algorithms

sycl

auto
auto
auto
auto

::sub_group sg = it.get sub _group();

QN oCow

sycl::
sycl::
sycl::
sycl::

shift _group left(sg, x, 1);
shift group right(sg, x, 1);
select from group(sg, x, id);

permute_group by xor(sg, x, mask);

N

i N o
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Some common programming
languages/frameworks

=
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| anguages/frameworks vary in model and mapping

Cross-lane Cross-lane
abstraction communication

Interpretation of vector types

 sycl:marray for intra work-item i :

SYCL SPMD  Future std::simd alignment for SIMD Sub-group Group algorithms
OpenCL SPMD Not spec mandated. Implementers interpret Sub-group Sub-group functions
CUDA  SPMD (SIMT) Intra work-item* Warp Cooperative group,

intrinsics
OpenMP  SISD + SPMD No vector types defined in specification Impls;rf\iir:jtlon N/A
Kokkos SPMD Math convenience type, SIMD math wrappers  Nested parallelism Algorithms

*Some explicit SIMD ops with data type re-interpretziion
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Composing programming models

=
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—xperimental: Stepping across execution models

= Occasionally, experts want to code directly to an architecture (small % of code)

= More control over compiler, working around bugs, or use of new hardware features

= Working on proving ground extension to compose programming models
= Composition of models with clear boundaries / semantics / type safety

= Coherently incorporates concepts from other programming models (e.g. ISPC, OpenMP)

—
b

-~
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Enabling composition: “Invoke SIMD” extension

namespace ex = sycl::ext::oneapi::experimental;

ex::simd<float, 8> scaleﬂex::simd<float, 8> x, float n) {
return x * n;
}

g.parallel for(..., sycl::nd item<1> it) [[sycl::reqd _sub_group size(8)]] {
sycl::sub_group sg = it.get _sub_group();
float x e
float n e

// Invoke SIMD function - x values from each work-item are combined into a simd<float, 8>
float y = ex::invoke simd(sg,| scale,| x, ex::uniform(n));

})s f

In callee, switch from SPMD to explicit SIMD execution
context (SIMD with respect to sub-group sg)

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/proposed/sycl_ext_oneapi_invoke_simd.asciidoc
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Enabling composition: “Invoke SIMD” extension (2)

float y = ex::invoke_simd(sg, scale, x, ex::uniform(n));

// Invoke SIMD function - x values from each work-item combined into simd<float, 8>\‘

SPMD

Program | c[id] = a[id] + b[id];]

Execution l%%_l
SIMD
invoke simd // Vector instruction}
c8 = a8 + bs; SIMD content could

i ~— be intrinsics or even
~ N a different language
SPMD

‘ c[id] = a[id] + b[id];]

TN
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Takeaway #3

Pure models can have gaps in portability or performance.
Step outside the model in consistent, well-defined ways.

Sub-group decomposition of work-group

Sub-groups add concept of ganged lanes
and collective operations to SPMD model

T~ Sub-group
(size=2)

Invoke_simd extension enables coding directly
to architecture in small % of code, when needed

SYCLCon"22

c[id] = a[id] + b[id];

[t
G

SIMD

// Vector instruction
c8 = a8 + bs8;

X

c[id] = a[id] + b[id];

T
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Non-scalar lanes and recap

=
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Reality: Vector “lanes” are not always scalar

Hybrid: Work-item uses >1 vecto

SPMD
ca[id] = a4[id] + ba[id]; ]

Vector HW

rlane Hybrid: Explicit vector width > #vector lanes

SIMD
c16[id] = a16[id] + bie[id];]

/

Vector HW

l Time

Special case: Some instructions do vector operations in a “lane”
SPMD

c2[id] = a2[id] + bz[id];]

SYCLCon"22

I Vector HW that sometimes

| | has non-scalar lanes
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Recap — key mappings to hardware

Style 1: SPMD mapping

SPMD
ca[id] = a4[id] + b4[id];]

Multiple work-items
fill vector HW lanes

Vector HW

lTime

AN

Vector unrolled across time in
single “lane”

marray added to SYCL 2020 for this!
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Recap — key mappings to hardware (2)

Style 1: SPMD mapping

SPMD
ca[id] = a4[id] + b4[id];]

Multiple work-items
fill vector HW lanes

Vector HW

lTime

N\

Vector unrolled across time in
single “lane”

marray added to SYCL 2020 for this!

SYCLCon"22

Style 2: SPMD with sub-groups

Sub-group decomposition of
work-group

Sub-group
ot  (size=4)

Sub-group maps to vector HW

Vector HW

Sub-group represents SIMD width, gives
representation for collective operations

This is why SG exist in SYCL 2020

intel. * 3



Recap — key mappings to hardware (3)

Style 1: SPMD mapping

SPMD
ca[id] = a4[id] + b4[id];]

Multiple work-items
fill vector HW lanes

Vector HW

lTime

N\

Vector unrolled across time in
single “lane”

marray added to SYCL 2020 for this!

SYCLCon"22

Style 2: SPMD with sub-groups

Sub-group decomposition of
work-group

Sub-group
(size=4)

»

Sub-group maps to vector HW

Vector HW

Sub-group represents SIMD width, gives
representation for collective operations

This is why SG exist in SYCL 2020

Style 3a: SPMD with explicit SIMD
coding in special code regions

SPMD

C[id] = a[id] + b[id];]

SIMD

// Vector instruction

c8=i8+b8,'
SPMDf EF EEEEEE

Cc[id] = a[id] + b[id];]

T

Vectors in language explicitly map
(non-portably) to vector HW
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Recap — key mappings to hardware (4)

Style 1: SPMD mapping Style 2: SPMD with sub-groups j Style 3a: SPMD with explicit SIMD
coding in special code regions
SPMD Sub-group decomposition of ST;D] o b[_d]_]
calid] = a4[id] + ba[id];] work-group ﬁ??%‘l
SIMD
MUl.t|p|.e WOI’k-ItemS Sub-group w // Vector instr‘uction]
fill vector HW lanes 4 (size=4) c8 - ?8 * fi
SPMDf (T
Vector HW C[id] = a[id] + b[id];]
Time Sub-group maps to vector HW Vectors inlanguage explicitly map
(non-portably) to vector HW
\ VectorHw F e
Vector unrolled across time in Style 3b: Full kernel explicit SIMD
single “lane” Sub-group represents SIMD width, gives SIMD
representation for collective operations my_explicit SIMD kernel (...) {
marray added to SYCL 2020 for this! This is why SG exist in SYCL 2020 cs = a8 + b8; } 1
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T akeaways

SPMD

C[id] = a[id] + b[id];]

1. SPMD: Improves portability + an easier mental model

2- Performance = -Floa’t\4 sum = 3.0 + temp2;
N

Programming model + Toolchain interpretation D:é %

3. Pure models create gaps in portability or performance ER[EE
. . . . D]D] Sub-group
= Must occasionally step outside model. Do so in a consistent, OO Gize2)
well-defined framework LLICT]
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