
Presenter: Mike Kinsner

Co-authors: Ben Ashbaugh, James Brodman, Greg Lueck, John Pennycook and Roland Schulz





▪

▪

▪

▪



▪

▪





* 

▪

▪



* 

▪

▪



▪



▪

▪

▪

▪





Vector HW

Single “work-item” of code creates work 

to fill vector hardware

Explicit SIMD

Often ~direct 
mapping

// Vector addition
c8 = a8 + b8;

Single Instruction Multiple Data (SIMD):



Vector HW

C[id] = a[id] + b[id];

SPMD

Compiler or hardware maps
work-items to vector HW

Multiple work-items populate lanes

that may map to vector hardware

Vector HW

Single “work-item” of code creates work 

to fill vector hardware

Explicit SIMD

Often ~direct 
mapping

Single Instruction Multiple Data (SIMD): Single Program Multiple Data (SPMD*):

// Vector addition
c8 = a8 + b8;

* Also called SIMT and other names



Multiple work-items populate lanes

that may map to vector hardware

SISD

Vectorizer

Vector HW

Explicit SIMD

Often ~direct 
mapping

// Vector addition
c8 = a8 + b8;

Vector HW

C[id] = a[id] + b[id];

SPMD

Compiler or hardware maps
work-items to vector HW

Single Program Multiple Data (SPMD):Add in Single Instruction Single Data (SISD)

for (i=0; i<8; i++) {
c[i] = a[i] + b[i];

}

Single “work-item” of code creates work 

to fill vector hardware



SISD

Vectorizer

Vector HW

Explicit SIMD

Often ~direct 
mapping

// Vector addition
c8 = a8 + b8;

Vector HW

C[id] = a[id] + b[id];

SPMD

Compiler or hardware maps
work-items to vector HW

SPMD:
• More portable across architectures / generations
• Easier to reason about how to write correct code
• Details like masking handled by toolchain

for (i=0; i<8; i++) {
c[i] = a[i] + b[i];

}

Explicit SIMD:
• Direct control over hardware
• Often 1:1 mapping
• Direct cross-lane operations 

SISD:
• Easy for sequential coders
• Automaton or directives 

fit in well



C[id] = a[id] + b[id];

SPMD

C[id] = a[id] + b[id];

SPMD

C[id] = a[id] + b[id];

SPMD





float4 sum = 3.0 + temp2;

4-lane vector HW unit

▪

▪

▪

An option: 



float4 sum = 3.0 + temp2;

4-lane vector HW unit

8-lane vector HW unit

Instruction cycles / time

▪

▪

▪

▪

▪

▪

▪

An option: An option: 



float4 sum = 3.0 + temp2;

SISD Explicit SIMD

// Vector addition
c8 = a8 + b8;

C[id] = a[id] + b[id];

SPMD

for (i=0; i<8; i++) {
c[i] = a[i] + b[i];

}



▪

▪

▪

sycl::sub_group sg = it.get_sub_group();

auto a = sycl::shift_group_left(sg, x, 1);
auto b = sycl::shift_group_right(sg, x, 1);
auto c = sycl::select_from_group(sg, x, id);
auto d = sycl::permute_group_by_xor(sg, x, mask);





•

•





▪

▪

▪

▪

▪



sg

namespace ex = sycl::ext::oneapi::experimental;

ex::simd<float, 8> scale(ex::simd<float, 8> x, float n) {
return x * n;

}

q.parallel_for(..., sycl::nd_item<1> it) [[sycl::reqd_sub_group_size(8)]] {
sycl::sub_group sg = it.get_sub_group();
float x = ...;
float n = ...;

// Invoke SIMD function - x values from each work-item are combined into a simd<float, 8>
float y = ex::invoke_simd(sg, scale, x, ex::uniform(n));

});



// Invoke SIMD function - x values from each work-item combined into simd<float, 8>
float y = ex::invoke_simd(sg, scale, x, ex::uniform(n));

c[id] = a[id] + b[id];

c[id] = a[id] + b[id];

// Vector instruction
c8 = a8 + b8;



c[id] = a[id] + b[id];

c[id] = a[id] + b[id];

// Vector instruction
c8 = a8 + b8;





Hybrid: 

c4[id] = a4[id] + b4[id];

SPMD

Vector HW

Special case: 

c16[id] = a16[id] + b16[id];

SIMD

Vector HW

Time

Hybrid: 

c2[id] = a2[id] + b2[id];

SPMD

Vector HW that sometimes 
has non-scalar lanes



Style 1: 

marray added to SYCL 2020 for this!

SPMD

Multiple work-items 
fill vector HW lanes

Vector HW

Time

c4[id] = a4[id] + b4[id];



Style 1: Style 2: 

marray added to SYCL 2020 for this!

Vector HW

SPMD

Multiple work-items 
fill vector HW lanes

Vector HW

Time

This is why SG exist in SYCL 2020

c4[id] = a4[id] + b4[id];



Style 1: Style 2: Style 3a: 

marray added to SYCL 2020 for this!

Vector HW

SPMD

Multiple work-items 
fill vector HW lanes

Vector HW

Time

This is why SG exist in SYCL 2020

c4[id] = a4[id] + b4[id];



Style 1: Style 2: Style 3a: 

marray added to SYCL 2020 for this!

Vector HW

c4[id] = a4[id] + b4[id];

SPMD

Multiple work-items 
fill vector HW lanes

Vector HW

Time

This is why SG exist in SYCL 2020

Style 3b: 

my_explicit_SIMD_kernel (...) {
...
c8 = a8 + b8; }

SIMD



▪

C[id] = a[id] + b[id];

SPMD

float4 sum = 3.0 + temp2;




