
Celerity: How (Well) Does the
SYCL API Translate to Distributed

Clusters?
Philip Salzmann1, Fabian Knorr1, Peter Thoman1, Biagio Cosenza2

1University of Innsbruck, Austria - first.last@uibk.ac.at
2University of Salerno, Italy – bcosenza@unisa.it

IWOCL & SYCLcon 2022

mailto:first.last@uibk.ac.at
mailto:bcosenza@unisa.it

SYCL in HPC

• SYCL is gaining traction in HPC
• Several upcoming (pre-)exascale machines look to support SYCL
• Well-known HPC applications such as GROMACS are adding SYCL

support

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 2

SYCL in HPC

• SYCL has potential to become dominant in this space as it strikes a
good balance between abstraction and expressiveness

• High-level enough to alleviate many of the common burdens
• Allows to take low-level control where it is needed

• Inside kernels
• Optional APIs for explicit data movement, dependency management etc.

• Interop APIs allow to interface with vendor libraries and to gradually convert
legacy codes

• And of course: It is vendor neutral!

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 3

MPI + X

• The traditional approach
• Will probably remain relevant for foreseeable future
• Low level: Requires manual handling of work and data partitioning
• Typical approach: Blocking send/receive at clearly defined points in

time, implicit synchronization across nodes
• Advanced approaches: Using non-blocking operations or one-sided

communication for computation/communication overlap
• More difficult to implement
• Hard to change afterwards; hampers flexibility in algorithmic experimentation

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 4

MPI + SYCL

• It works - SYCL can be combined with MPI in same ways as MPI +
CUDA or MPI + OpenCL

• However: SYCL operates on higher level of abstraction than
CUDA/OpenCL

• We believe that SYCL’s high-level, declarative dataflow APIs can and
should be extended to distributed memory clusters…

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 5

The Celerity Programming Model

• Goal: Extend SYCL to distributed clusters
• It is not a SYCL implementation

• Abstraction layer on top of MPI + SYCL
• Forwards kernel code to an underlying SYCL implementation

• Tries to stay as close to SYCL API as possible
• Code should look very familiar
• Neither a true subset nor superset of the SYCL API

• Currently being validated in two industry use cases on Marconi-100
supercomputer at CINECA, Italy as part of the LIGATE project

• Drug-discovery pipeline
• ToF room response simulation

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 6

SYCL Core Concepts: Queues

• It’s not a queue!
• (Unless property::queue::in_order is provided)

• Builds a task graph
• Either implicitly (accessors),
• Or explicitly (events, handler::depends_on)
• Enables scheduling freedom for SYCL runtime

• Associated with a single device
• Can have multiple queues in a program

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 7

sycl::queue my_queue(sycl::gpu_selector_v);
my_queue.submit(/*...*/);

MPI + SYCL: Queues

• Typically, multiple devices (e.g., 4) on a single node
• Need to manually manage device selection on a single node

• Can either use a single device per rank, multiple ranks per node
• …or multiple devices per rank, single rank per node

• Potentially faster
• Additional layer of complexity regarding work and data distribution

• Few opportunities to leverage out-of-order semantics in basic MPI +
SYCL applications

• Due to implicit synchronization on communication

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 8

Celerity: Queues

• In Celerity there is only one distributed queue
• (Also not a queue!)
• Manages device<->rank assignments automatically

• Works mostly the same way as in SYCL
• Builds implicit task graph (but with finer granularity)
• Allows for task splitting across cluster nodes

• SPMD model: All ranks submit the same set of tasks (command
groups)

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 9

SYCL Core Concepts: Buffers

• High level of abstraction
• Multi-dimensional data access
• Do not correspond to any single allocation
• Transparently migrated between host and one or more devices as needed

• Safe
• Ref-counted
• Destructor will block until all operations on buffer have completed

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 10

sycl::buffer<double, 2> my_buf({512, 512});

MPI + SYCL: Buffers

Manual work partitioning requires manual data partitioning.
Some options:
• Buffer on each rank contains partial data

• Standard MPI approach
• Manual bookkeeping required: Which part of problem domain exists where at

what point in time?

• Use single global buffer containing data for all ranks
• Pro: Can use global indexing (with offsets) inside kernels
• If not all data is needed everywhere, it’s wasteful at best, infeasible at worst

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 11

Celerity: Buffers

• Fully virtualized!
• All ranks can use the same buffer
• Only required parts are allocated on each rank

• Consequence: We need to somehow know which parts of virtualized
buffer are required where

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 12

SYCL Core Concepts: Accessors

• Core construct for declarative data access
• Communicate ahead of time how a buffer will be accessed (for

reading, writing, or both)
• Available both on device and host
• Fine-grained control through ranged accessors (optimization

opportunity)

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 13

sycl::accessor my_acc(my_buf, cgh, sycl::write_only);

MPI + SYCL: Accessors

• Use host accessor to get data from/to device before/after MPI
transfer

• However, if there is a direct GPU<->GPU interconnect (e.g., PCIe bus or
GPUDirect RDMA) this incurs unnecessary transfers

• Host accessors are implicit synchronization points

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 14

if(rank == 0) {
sycl::host_accessor my_acc(my_buf, sycl::read_only);
MPI_Send(my_acc.get_pointer(), my_acc.size(), MPI_FLOAT, 1, 0, MPI_COMM_WORLD);

} else {
sycl::host_accessor my_acc(my_buf, sycl::write_only, {sycl::no_init});
MPI_Recv(my_acc.get_pointer(), my_acc.size(), MPI_FLOAT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}

Celerity: Accessors

• Task splitting: Additionally specify where a buffer is being accessed
• Range mappers are used to build fine-grained task graph

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 15

celerity::accessor my_acc{my_buf, cgh, celerity::access::slice<2>(1), celerity::read_only};

Celerity: Accessors

• Task splitting: Additionally specify where a buffer is being accessed
• Range mappers are used to build fine-grained task graph

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 16

celerity::accessor my_acc{my_buf, cgh, celerity::access::slice<2>(1), celerity::read_only};

Celerity: Accessors

• Task splitting: Additionally specify where a buffer is being accessed
• Range mappers are used to build fine-grained task graph

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 17

celerity::accessor my_acc{my_buf, cgh, celerity::access::slice<2>(1), celerity::read_only};

Celerity: Accessors

• Task splitting: Additionally specify where a buffer is being accessed
• Range mappers are used to build fine-grained task graph

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 18

celerity::accessor my_acc{my_buf, cgh, celerity::access::slice<2>(1), celerity::read_only};

Celerity: Accessors

• Task splitting: Additionally specify where a buffer is being accessed
• Range mappers are used to build fine-grained task graph

• Kernel code can in many cases be directly reused from SYCL
• Pointer based access is a bit tricky due to virtualized buffers (different strides)

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 19

celerity::accessor my_acc{my_buf, cgh, celerity::access::slice<2>(1), celerity::read_only};

Additional Features: USM

• SYCL
• Allows for low level control over device memory
• Enables interop with pointer-based APIs and legacy codes
• Requires manual dependency management between kernels

• MPI + SYCL
• Fully manual control over data movement
• Allows to leverage GPU-aware MPI

• Celerity
• Impossible to support (pure library implementation)

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 20

float* my_ptr = sycl::malloc_device<float>(1024, my_queue);

Additional Features: Host Tasks

• SYCL
• Allows to insert host code into asynchronous execution flow
• Offers interoperability features to access native objects (e.g., CUDA, Level Zero,

OpenCL) behind buffers, queues etc.
• Requires care when interacting with objects from main thread

• MPI + SYCL
• Enables asynchronous communication and latency hiding in combination with non-

blocking routines
• Interop presents way of leveraging GPU-aware MPI with buffers

• Celerity
• Additionally supports collective host tasks, useful for bulk I/O and other collective

operations

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 21

Additional Features: Reductions

• SYCL
• Declarative API similar to accessors
• Currently only 0-dimensional (buffer) or 1-dimensional (span) reductions

• MPI + SYCL
• May require additional MPI reduction for final result

• Celerity
• Automatically takes care of inter-node reduction step

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 22

my_queue.submit([&](sycl::handler& cgh) {
sycl::accessor acc(my_buf, cgh, sycl::read_only);
auto sum_reducer = sycl::reduction(sum_buf, cgh, sycl::plus<>());
cgh.parallel_for(my_buf.get_range(), sum_reducer, [=](sycl::id<2> id, auto& sum) {
sum += acc[id];

});
});

MPI + SYCL / Celerity: Summary

• SYCL can be paired with MPI just like CUDA or OpenCL
• Many different options with varying degrees of complexity and flexibility

• Host accessors
• Host tasks + interop
• USM
• …

• SYCL already has information required to execute tasks across
multiple devices or even multiple nodes in distributed cluster

• Which buffers are being accessed, when, and how (reading/writing)
• Requires one additional piece of information (where) to enable task splitting

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 23

From SYCL to Celerity: Jacobi Stencil

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 24

sycl :: queue queue;

sycl ::buffer<double, 2> in_buf({N, N});
sycl ::buffer<double, 2> out_buf({N, N});

for(int i = 0; i < num_iterations; ++i) {
queue.submit([&](sycl ::handler& cgh) {

sycl ::accessor in{in_buf, cgh, sycl ::read_only};
sycl ::accessor out{out_buf, cgh, sycl ::read_write};

cgh.parallel_for(out_buf.get_range(), [=](sycl ::item<2> itm) {
/* boundary handling omitted for brevity */
const auto i = itm[0];
const auto j = itm[1];
out[itm] = (in[{i, j - 1}] + in[{i, j + 1}] + in[{i - 1, j}] + in[{i + 1, j}]) / 4.0;

});
});
std::swap(in_buf, out_buf);

}

From SYCL to Celerity: Jacobi Stencil

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 25

celerity::distr_queue queue;

celerity::buffer<double, 2> in_buf({N, N});
celerity::buffer<double, 2> out_buf({N, N});

for(int i = 0; i < num_iterations; ++i) {
queue.submit([=](celerity::handler& cgh) {

auto nbr = celerity::access::neighborhood<2>{1, 1};
auto o2o = celerity::access::one_to_one{};
celerity::accessor in{in_buf, cgh, nbr, celerity::read_only};
celerity::accessor out{out_buf, cgh, o2o, celerity::read_write};

cgh.parallel_for(out_buf.get_range(), [=](celerity::item<2> itm) {
/* boundary handling omitted for brevity */
const auto i = itm[0];
const auto j = itm[1];
out[itm] = (in[{i, j - 1}] + in[{i, j + 1}] + in[{i - 1, j}] + in[{i + 1, j}]) / 4.0;

});
});
std::swap(in_buf, out_buf);

}

From SYCL to Celerity: Jacobi Stencil

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 26

celerity::distr_queue queue;

celerity::buffer<double, 2> in_buf({N, N});
celerity::buffer<double, 2> out_buf({N, N});

for(int i = 0; i < num_iterations; ++i) {
queue.submit([=](celerity::handler& cgh) {

auto nbr = celerity::access::neighborhood<2>{1, 1};
auto o2o = celerity::access::one_to_one{};
celerity::accessor in{in_buf, cgh, nbr, celerity::read_only};
celerity::accessor out{out_buf, cgh, o2o, celerity::read_write};

cgh.parallel_for(out_buf.get_range(), [=](celerity::item<2> itm) {
/* boundary handling omitted for brevity */
const auto i = itm[0];
const auto j = itm[1];
out[itm] = (in[{i, j - 1}] + in[{i, j + 1}] + in[{i - 1, j}] + in[{i + 1, j}]) / 4.0;

});
});
std::swap(in_buf, out_buf);

}

Read 4 neighboring elements
along main axes

[Wikipedia]

https://en.wikipedia.org/wiki/Iterative_Stencil_Loops#/media/File:2D_von_Neumann_Stencil.svg

celerity::distr_queue queue;

celerity::buffer<double, 2> in_buf({N, N});
celerity::buffer<double, 2> out_buf({N, N});

for(int i = 0; i < num_iterations; ++i) {
queue.submit([=](celerity::handler& cgh) {

auto nbr = celerity::access::neighborhood<2>{1, 1};
auto o2o = celerity::access::one_to_one{};
celerity::accessor in{in_buf, cgh, nbr, celerity::read_only};
celerity::accessor out{out_buf, cgh, o2o, celerity::read_write};

cgh.parallel_for(out_buf.get_range(), [=](celerity::item<2> itm) {
/* boundary handling omitted for brevity */
const auto i = itm[0];
const auto j = itm[1];
out[itm] = (in[{i, j - 1}] + in[{i, j + 1}] + in[{i - 1, j}] + in[{i + 1, j}]) / 4.0;

});
});
std::swap(in_buf, out_buf);

}

Write single element into
buffer at thread index

From SYCL to Celerity: Jacobi Stencil

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 27

[Wikipedia]

https://en.wikipedia.org/wiki/Iterative_Stencil_Loops#/media/File:2D_von_Neumann_Stencil.svg

Performance

• Running fluid dynamics stencil code on consumer-grade (RTX 2070) cluster
with up to 16 GPUs

• Simple split vs 4x oversubscribed (overlapping boundary exchange with computation)
• Caveat: Uses some unreleased features that will be upstreamed soon

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 28

Celerity Under The Hood

• Celerity itself uses SYCL in an unusual manner
• It has more information about task relationships than SYCL
• Manages host-side memory on its own
• Takes care of all data movement explicitly

• Kernels are submitted in a busy loop, checked for completion using
event status queries

• Want precise control over when kernels are launched

• USM would be a good fit (no implicit DAG)
• However currently lacking 2D/3D rectangular copy operations

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 29

Outlook / Wishlist

• Improved rectangular copy API, including for USM
• Multi-dimensional array reductions

• Support for declarative prefix sums

• More precise control over when a kernel is launched
• For example through a queue::flush API

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 30

Wrapping Up

 Visit the Celerity website
 https://celerity.github.io

 Follow the development on GitHub
 https://github.com/celerity/celerity-runtime

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 31

This project has received funding from the
European High Performance Computing Joint Undertaking (JU)

under grant agreement No 956137
as well from the Austrian Research Promotion Agency

under grant agreement No 879201.

https://celerity.github.io/
https://github.com/celerity/celerity-runtime

	Celerity: How (Well) Does the SYCL API Translate to Distributed Clusters?
	SYCL in HPC
	SYCL in HPC
	MPI + X
	MPI + SYCL
	The Celerity Programming Model
	SYCL Core Concepts: Queues
	MPI + SYCL: Queues
	Celerity: Queues
	SYCL Core Concepts: Buffers
	MPI + SYCL: Buffers
	Celerity: Buffers
	SYCL Core Concepts: Accessors
	MPI + SYCL: Accessors
	Celerity: Accessors
	Celerity: Accessors
	Celerity: Accessors
	Celerity: Accessors
	Celerity: Accessors
	Additional Features: USM
	Additional Features: Host Tasks
	Additional Features: Reductions
	MPI + SYCL / Celerity: Summary
	From SYCL to Celerity: Jacobi Stencil
	From SYCL to Celerity: Jacobi Stencil
	From SYCL to Celerity: Jacobi Stencil
	From SYCL to Celerity: Jacobi Stencil
	Performance
	Celerity Under The Hood
	Outlook / Wishlist
	Wrapping Up

