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SYCL in HPC

• SYCL is gaining traction in HPC
• Several upcoming (pre-)exascale machines look to support SYCL
• Well-known HPC applications such as GROMACS are adding SYCL 

support
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SYCL in HPC

• SYCL has potential to become dominant in this space as it strikes a 
good balance between abstraction and expressiveness

• High-level enough to alleviate many of the common burdens
• Allows to take low-level control where it is needed

• Inside kernels
• Optional APIs for explicit data movement, dependency management etc.

• Interop APIs allow to interface with vendor libraries and to gradually convert 
legacy codes

• And of course: It is vendor neutral!
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MPI + X

• The traditional approach
• Will probably remain relevant for foreseeable future
• Low level: Requires manual handling of work and data partitioning
• Typical approach: Blocking send/receive at clearly defined points in 

time, implicit synchronization across nodes
• Advanced approaches: Using non-blocking operations or one-sided 

communication for computation/communication overlap
• More difficult to implement
• Hard to change afterwards; hampers flexibility in algorithmic experimentation
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MPI + SYCL

• It works - SYCL can be combined with MPI in same ways as MPI + 
CUDA or MPI + OpenCL

• However: SYCL operates on higher level of abstraction than 
CUDA/OpenCL

• We believe that SYCL’s high-level, declarative dataflow APIs can and 
should be extended to distributed memory clusters…
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The Celerity Programming Model

• Goal: Extend SYCL to distributed clusters
• It is not a SYCL implementation

• Abstraction layer on top of MPI + SYCL
• Forwards kernel code to an underlying SYCL implementation

• Tries to stay as close to SYCL API as possible
• Code should look very familiar
• Neither a true subset nor superset of the SYCL API

• Currently being validated in two industry use cases on Marconi-100
supercomputer at CINECA, Italy as part of the LIGATE project

• Drug-discovery pipeline
• ToF room response simulation
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SYCL Core Concepts: Queues

• It’s not a queue!
• (Unless property::queue::in_order is provided)

• Builds a task graph
• Either implicitly (accessors),
• Or explicitly (events, handler::depends_on)
• Enables scheduling freedom for SYCL runtime

• Associated with a single device
• Can have multiple queues in a program
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sycl::queue my_queue(sycl::gpu_selector_v);
my_queue.submit(/*...*/);



MPI + SYCL: Queues

• Typically, multiple devices (e.g., 4) on a single node
• Need to manually manage device selection on a single node

• Can either use a single device per rank, multiple ranks per node
• …or multiple devices per rank, single rank per node

• Potentially faster
• Additional layer of complexity regarding work and data distribution

• Few opportunities to leverage out-of-order semantics in basic MPI + 
SYCL applications

• Due to implicit synchronization on communication
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Celerity: Queues

• In Celerity there is only one distributed queue
• (Also not a queue!)
• Manages device<->rank assignments automatically

• Works mostly the same way as in SYCL
• Builds implicit task graph (but with finer granularity)
• Allows for task splitting across cluster nodes

• SPMD model: All ranks submit the same set of tasks (command 
groups)
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SYCL Core Concepts: Buffers

• High level of abstraction
• Multi-dimensional data access
• Do not correspond to any single allocation
• Transparently migrated between host and one or more devices as needed

• Safe
• Ref-counted
• Destructor will block until all operations on buffer have completed
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sycl::buffer<double, 2> my_buf({512, 512});



MPI + SYCL: Buffers

Manual work partitioning requires manual data partitioning.
Some options:
• Buffer on each rank contains partial data

• Standard MPI approach
• Manual bookkeeping required: Which part of problem domain exists where at 

what point in time?

• Use single global buffer containing data for all ranks
• Pro: Can use global indexing (with offsets) inside kernels
• If not all data is needed everywhere, it’s wasteful at best, infeasible at worst
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Celerity: Buffers

• Fully virtualized!
• All ranks can use the same buffer
• Only required parts are allocated on each rank

• Consequence: We need to somehow know which parts of virtualized 
buffer are required where
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SYCL Core Concepts: Accessors

• Core construct for declarative data access
• Communicate ahead of time how a buffer will be accessed (for 

reading, writing, or both)
• Available both on device and host
• Fine-grained control through ranged accessors (optimization 

opportunity)
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sycl::accessor my_acc(my_buf, cgh, sycl::write_only);



MPI + SYCL: Accessors

• Use host accessor to get data from/to device before/after MPI 
transfer

• However, if there is a direct GPU<->GPU interconnect (e.g., PCIe bus or  
GPUDirect RDMA) this incurs unnecessary transfers

• Host accessors are implicit synchronization points
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if(rank == 0) {
sycl::host_accessor my_acc(my_buf, sycl::read_only);
MPI_Send(my_acc.get_pointer(), my_acc.size(), MPI_FLOAT, 1, 0, MPI_COMM_WORLD);

} else {
sycl::host_accessor my_acc(my_buf, sycl::write_only, {sycl::no_init});
MPI_Recv(my_acc.get_pointer(), my_acc.size(), MPI_FLOAT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}



Celerity: Accessors

• Task splitting: Additionally specify where a buffer is being accessed
• Range mappers are used to build fine-grained task graph
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celerity::accessor my_acc{my_buf, cgh, celerity::access::slice<2>(1), celerity::read_only};
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celerity::accessor my_acc{my_buf, cgh, celerity::access::slice<2>(1), celerity::read_only};
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celerity::accessor my_acc{my_buf, cgh, celerity::access::slice<2>(1), celerity::read_only};



Celerity: Accessors

• Task splitting: Additionally specify where a buffer is being accessed
• Range mappers are used to build fine-grained task graph

May 10-12, 2022 Celerity & Distributed SYCL - IWOCL/SYCLcon 18

celerity::accessor my_acc{my_buf, cgh, celerity::access::slice<2>(1), celerity::read_only};



Celerity: Accessors

• Task splitting: Additionally specify where a buffer is being accessed
• Range mappers are used to build fine-grained task graph

• Kernel code can in many cases be directly reused from SYCL
• Pointer based access is a bit tricky due to virtualized buffers (different strides)
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celerity::accessor my_acc{my_buf, cgh, celerity::access::slice<2>(1), celerity::read_only};



Additional Features: USM

• SYCL
• Allows for low level control over device memory
• Enables interop with pointer-based APIs and legacy codes
• Requires manual dependency management between kernels

• MPI + SYCL
• Fully manual control over data movement
• Allows to leverage GPU-aware MPI

• Celerity
• Impossible to support (pure library implementation)
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float* my_ptr = sycl::malloc_device<float>(1024, my_queue);



Additional Features: Host Tasks

• SYCL
• Allows to insert host code into asynchronous execution flow
• Offers interoperability features to access native objects (e.g., CUDA, Level Zero, 

OpenCL) behind buffers, queues etc.
• Requires care when interacting with objects from main thread

• MPI + SYCL
• Enables asynchronous communication and latency hiding in combination with non-

blocking routines
• Interop presents way of leveraging GPU-aware MPI with buffers

• Celerity
• Additionally supports collective host tasks, useful for bulk I/O and other collective 

operations
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Additional Features: Reductions

• SYCL
• Declarative API similar to accessors
• Currently only 0-dimensional (buffer) or 1-dimensional (span) reductions

• MPI + SYCL
• May require additional MPI reduction for final result

• Celerity
• Automatically takes care of inter-node reduction step
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my_queue.submit([&](sycl::handler& cgh) {
sycl::accessor acc(my_buf, cgh, sycl::read_only);
auto sum_reducer = sycl::reduction(sum_buf, cgh, sycl::plus<>());
cgh.parallel_for(my_buf.get_range(), sum_reducer, [=](sycl::id<2> id, auto& sum) {
sum += acc[id];

});
});



MPI + SYCL / Celerity: Summary

• SYCL can be paired with MPI just like CUDA or OpenCL
• Many different options with varying degrees of complexity and flexibility

• Host accessors
• Host tasks + interop
• USM
• …

• SYCL already has information required to execute tasks across 
multiple devices or even multiple nodes in distributed cluster

• Which buffers are being accessed, when, and how (reading/writing)
• Requires one additional piece of information (where) to enable task splitting
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From SYCL to Celerity: Jacobi Stencil
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sycl :: queue queue;

sycl ::buffer<double, 2> in_buf({N, N});
sycl ::buffer<double, 2> out_buf({N, N});

for(int i = 0; i < num_iterations; ++i) {
queue.submit([&](sycl ::handler& cgh) {

sycl ::accessor in{in_buf, cgh, sycl ::read_only};
sycl ::accessor out{out_buf, cgh, sycl ::read_write};

cgh.parallel_for(out_buf.get_range(), [=](sycl ::item<2> itm) {
/* boundary handling omitted for brevity */
const auto i = itm[0];
const auto j = itm[1];
out[itm] = (in[{i, j - 1}] + in[{i, j + 1}] + in[{i - 1, j}] + in[{i + 1, j}]) / 4.0;

});
});
std::swap(in_buf, out_buf);

}



From SYCL to Celerity: Jacobi Stencil
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celerity::distr_queue queue;

celerity::buffer<double, 2> in_buf({N, N});
celerity::buffer<double, 2> out_buf({N, N});

for(int i = 0; i < num_iterations; ++i) {
queue.submit([=](celerity::handler& cgh) {

auto nbr = celerity::access::neighborhood<2>{1, 1};
auto o2o = celerity::access::one_to_one{};
celerity::accessor in{in_buf, cgh, nbr, celerity::read_only};
celerity::accessor out{out_buf, cgh, o2o, celerity::read_write};

cgh.parallel_for(out_buf.get_range(), [=](celerity::item<2> itm) {
/* boundary handling omitted for brevity */
const auto i = itm[0];
const auto j = itm[1];
out[itm] = (in[{i, j - 1}] + in[{i, j + 1}] + in[{i - 1, j}] + in[{i + 1, j}]) / 4.0;

});
});
std::swap(in_buf, out_buf);

}



From SYCL to Celerity: Jacobi Stencil
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celerity::distr_queue queue;

celerity::buffer<double, 2> in_buf({N, N});
celerity::buffer<double, 2> out_buf({N, N});

for(int i = 0; i < num_iterations; ++i) {
queue.submit([=](celerity::handler& cgh) {

auto nbr = celerity::access::neighborhood<2>{1, 1};
auto o2o = celerity::access::one_to_one{};
celerity::accessor in{in_buf, cgh, nbr, celerity::read_only};
celerity::accessor out{out_buf, cgh, o2o, celerity::read_write};

cgh.parallel_for(out_buf.get_range(), [=](celerity::item<2> itm) {
/* boundary handling omitted for brevity */
const auto i = itm[0];
const auto j = itm[1];
out[itm] = (in[{i, j - 1}] + in[{i, j + 1}] + in[{i - 1, j}] + in[{i + 1, j}]) / 4.0;

});
});
std::swap(in_buf, out_buf);

}

Read 4 neighboring elements 
along main axes

[Wikipedia]

https://en.wikipedia.org/wiki/Iterative_Stencil_Loops#/media/File:2D_von_Neumann_Stencil.svg


celerity::distr_queue queue;

celerity::buffer<double, 2> in_buf({N, N});
celerity::buffer<double, 2> out_buf({N, N});

for(int i = 0; i < num_iterations; ++i) {
queue.submit([=](celerity::handler& cgh) {

auto nbr = celerity::access::neighborhood<2>{1, 1};
auto o2o = celerity::access::one_to_one{};
celerity::accessor in{in_buf, cgh, nbr, celerity::read_only};
celerity::accessor out{out_buf, cgh, o2o, celerity::read_write};

cgh.parallel_for(out_buf.get_range(), [=](celerity::item<2> itm) {
/* boundary handling omitted for brevity */
const auto i = itm[0];
const auto j = itm[1];
out[itm] = (in[{i, j - 1}] + in[{i, j + 1}] + in[{i - 1, j}] + in[{i + 1, j}]) / 4.0;

});
});
std::swap(in_buf, out_buf);

}

Write single element into 
buffer at thread index

From SYCL to Celerity: Jacobi Stencil
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[Wikipedia]

https://en.wikipedia.org/wiki/Iterative_Stencil_Loops#/media/File:2D_von_Neumann_Stencil.svg


Performance

• Running fluid dynamics stencil code on consumer-grade (RTX 2070) cluster 
with up to 16 GPUs

• Simple split vs 4x oversubscribed (overlapping boundary exchange with computation)
• Caveat: Uses some unreleased features that will be upstreamed soon
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Celerity Under The Hood

• Celerity itself uses SYCL in an unusual manner
• It has more information about task relationships than SYCL
• Manages host-side memory on its own
• Takes care of all data movement explicitly

• Kernels are submitted in a busy loop, checked for completion using 
event status queries

• Want precise control over when kernels are launched

• USM would be a good fit (no implicit DAG)
• However currently lacking 2D/3D rectangular copy operations
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Outlook / Wishlist

• Improved rectangular copy API, including for USM
• Multi-dimensional array reductions 

• Support for declarative prefix sums

• More precise control over when a kernel is launched
• For example through a queue::flush API 
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Wrapping Up

 Visit the Celerity website
 https://celerity.github.io

 Follow the development on GitHub
 https://github.com/celerity/celerity-runtime
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