
On The Compilation Performance
of Current SYCL Implementations

Peter Thoman,
Facundo Molina Heredia and Thomas Fahringer

peter.thoman@uibk.ac.at

10th INT’L WORKSHOP ON OPENCL & SYCL

Background, Motivation & Goals

IWOCL 2022 – SYCL Compilation Performance 2

Background

IWOCL 2022 – SYCL Compilation Performance 3

“SYCL is ideal for accelerating larger C++-based engines and

applications with performance portability.”

https://www.khronos.org/sycl

C++ Template Libraries C++ Template Libraries

SYCL Compiler CPU Compiler

Accelerators CPU

C++ Application Code Frameworks

C++ Template Libraries

C++ Libraries

Background

• “Larger” also means more source code

• SYCL is based on C++, and specifically uses quite a bit of templated code

• Which gives us all the nice type safety, zero-cost abstractions, etc.

• “Zero-cost” does not apply to compile time

IWOCL 2022 – SYCL Compilation Performance 4

C++ Template Libraries C++ Template Libraries

SYCL Compiler CPU Compiler

Accelerators CPU

C++ Application Code Frameworks

C++ Template Libraries

C++ Libraries

Motivation

• Celerity is a runtime system which implements a SYCL-like API on distributed
memory clusters

➔ Uses various SYCL implementations as back-ends
(which might in turn support multiple target platforms)

➔ Large integration and regression testing matrix

IWOCL 2022 – SYCL Compilation Performance 5

Motivation

• Celerity is a runtime system which implements a SYCL-like API on distributed
memory clusters

➔ Uses various SYCL implementations as back-ends
(which might in turn support multiple target platforms)

➔ Large integration and regression testing matrix

IWOCL 2022 – SYCL Compilation Performance 6

Goals

• Quantify the compile-time performance of various SYCL implementations

• Analyse the impact of individual SYCL features on compile time

• Monitor compilation performance over (development) time

• In this work:

1. A code generator for creating parameterized input SYCL code

2. Open source tooling for fetching and building SYCL implementations (at some point in
time), and running statistically sound experiments on them

3. A quantitative evaluation on both generated and real-world code bases

IWOCL 2022 – SYCL Compilation Performance 7

Sycl Implementations
and Code Generation

IWOCL 2022 – SYCL Compilation Performance 8

SYCL Implementations

• Many SYCL implementations available

• How to select for this study?

• We based our selection on (very imperfect) metrics for use/popularity:
Age, mention on Khronos SYCL site, Github stars (where applicable)

IWOCL 2022 – SYCL Compilation Performance 9

SYCL Implementations Evaluated

Identifier Notes Versions

ccpp ComputeCPP (spir64 BE) 2.4, 2.5, 2.6, 2.7, 2.8

dpcpp_s Data-parallel CPP (spir64 BE) 2022-01-13, 2021-11-14, 2021-09-15

dpcpp_n Data-parallel CPP (CUDA BE) 2022-01-13, 2021-11-14, 2021-09-15

dpcpp_ns Data-parallel CPP (both BEs) 2022-01-13, 2021-11-14, 2021-09-15

hipSYCL HipSYCL (CUDA BE) 2022-01-13, 2021-09-15, 2021-07-17, 2021-05-18, 2021-03-19

triSYCL TriSYCL (C++20 BE) 2022-01-12

IWOCL 2022 – SYCL Compilation Performance 10

• Versions usually spaced 60 days apart – some exceptions:

• hipSYCL: 2021-11-14 not stable

• Dpcpp: build system changes before 2021-09

• ComputeCPP: use numbered releases

Code Generation - Goals

• Targeting of individual SYCL features

• Broad compatibility with SYCL implementations

• Guarding against undesired optimization

• Arbitrary scaling of parameters

• Composability

IWOCL 2022 – SYCL Compilation Performance 11

Code Generation – Relevant Parameters

• Buffer Num: varying how many buffers are accessed

• Capture Num: varying the number of variables captured

• Dimensions: varying the buffer and work dims operated on from 1 to 3

• Kernel Num: varying the total number of kernels

• Loopnests: varying the nesting level of loops from 1 up to 6

• Mix: testing different instruction mixes within a kernel

• e.g. mad:50,cos:50 / add:25,mad:25,cos:25,sqrt:25

IWOCL 2022 – SYCL Compilation Performance 12

Code Generation – Sample

IWOCL 2022 – SYCL Compilation Performance 13

compiletime_gen.rb -k 1 -b 3 -c 2 -d 1 -l 2 -t int -m cos:1,mad:1

Evaluation

IWOCL 2022 – SYCL Compilation Performance 14

Experiment Setup

Hardware / Software

IWOCL 2022 – SYCL Compilation Performance 15

Statistics & Runs

48 experiments
20 implementations, dbg and rel (2)
50 runs per data point

= 96000 measurements

→ Parallelize experiments
(verified minimal impact on subset)

CPU 2x AMD EPYC 7282 16 Core *

Memory 256 GB DDR4-3200, 8 channel

Storage Samsung NVMe SSD SM981 #

OS Ubuntu Linux 20.04.2 LTS

Kernel 5.4.0-80-generic

Base Compiler g++ 9.3.0

* frequency locked at 2.8 GHz all-core

generated output on ramdisk

Kernel Scaling

16

Buffer Scaling

17

* dpcpp_n(s) and
hipSYCL fail

**

Instruction Mix

18

Release and Debug Configurations

19

Performance Over Time

20

Performance Over Time - Detail

21

26th of May, 2021

“Accessor variant” feature
branch merged
https://github.com/illuhad/hipSYCL/pull/555

→ Far-reaching changes

→ Indicates value of compile-time
performance regression testing

https://github.com/illuhad/hipSYCL/pull/555

Real-world Programs

22

Moderately sized
(Celerity application)

Larger overall code base
(some compatibility constraints)

Summary & Conclusion

IWOCL 2022 – SYCL Compilation Performance 23

Conclusion

• Compilation time is a non-negligible factor for large-scale SYCL adoption

• Overall, when targeting GPUs:

• ComputeCPP performs best in terms of compilation times

• DPCPP and hipSYCL are comparable, though DPCPP is slower with the CUDA BE

• triSYCL offers very fast compilation for CPUs

• Some implementation changes have outsized impact on compile times
→ compiler performance regression testing

IWOCL 2022 – SYCL Compilation Performance 24

Thank you for your attention!

peter.thoman@uibk.ac.at

Contributions to this research were partially
funded by the European High-Performance Computing Joint Undertaking (JU)

under grant agreement No 956137 (LIGATE project).

https://github.com/PeterTh/syclcomp_utils

https://github.com/PeterTh/syclcomp_utils

