
Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Siva Rama Krishna Reddy B

Senior Staff Engineer

Qualcomm India Private Limited

Large Language Models on Qualcomm ® Adreno GPU



2

• About Generative AI & Large Language Models

• Challenges on Edge devices

• Baseline reference

• Performance improvement

• Upcoming

A
g

e
n

d
a



3

About Generative AI & Large Language Models

• Discriminative AI

• Focused to learn the boundaries

• Classification, Object detection, Image quality enhancements.

• Generative AI

• Focused to generate new data like the training data in a meaningful way.

• Models learn the underlaying probability distribution of training data.

• Capable of image synthesis, text generation, music and video generation.

• Generative Adversarial Networks (GANs)

• Variational Autoencoders (VAEs)

• Transformers and diffusion models

• Large Language Models

• Generative AI models trained with volumes of text data.

• Capable of performing wide range of tasks

• Answering, Article writing (code also) , language translators, chat bots and many 

more 
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• Exponentially increased params

• 7B model has 12GB of parameters.

• DDR throughput impacts the overall performance.

• Every token processing needs all the params and context data.

• Increased ALU utilization for prompt processing.

• Additional optimizations for new operations

• Attention layers

• Grouped SoftMax

• Context or state maintenance across calls

Challenges on Edge device
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Baseline Reference
About LLaMA from Meta
• LLaMa, A collection of Large Language Models from Meta.

• Collection of pre trained and fine-tuned models from GenAI, Meta.

• LLaMa (Feb 2023): https://arxiv.org/pdf/2302.13971.pdf

• LLaMa 2 (Jul 2023): https://arxiv.org/pdf/2307.09288.pdf

• Parameters ranging from 7B to 70B

• LLaMa-13B outperforms GPT-3 (175B) on most benchmarks

• LLaMa65B is competitive with the best models, Chinchilla-70B and PaLM-540B

Competitive Private LLM’s

▪ Palm and PaLM2:
▪ Google

▪ PaLM 2 is a state-of-the-art language model with 
improved multilingual, reasoning and coding 
capabilities.

▪ 540B 

▪ https://blog.research.google/2022/04/pathways-
language-model-palm-scaling-to.html

▪ Chinchilla:
▪ Company – DeepMind

▪ 70B

▪ GPT-3
▪ Company – OpenAI

▪ Claude2
▪ Company – Anthropic

▪ 100K context windows ~ 12x of GPT-4, ~ 24x of Llama2

▪ Anthropic \ Claude 2

Competitive Opensource LLM’s

▪ MPT, Mosiac ML

▪ https://www.mosaicml.com/blog/mpt-7b

▪ 7B, 30B

▪ Falcon LLM, Abu Dhabi-UAE – The Technology 

Innovation Institute (TII) 

▪ https://falconllm.tii.ae

▪ 1.3B, 7.5B, 40B, 180B

▪ Mistral 7B, Mistral Ai

▪ https://docs.mistral.ai

▪ 7B

▪ Pythia, Eleuther

▪ https://www.eleuther.ai, 
https://github.com/EleutherAI/pythia

▪ 70M to 12B

▪ Dolly, Databricks

▪ https://github.com/databrickslabs/dolly

▪ 3B, 6B, 7B, 12B

https://arxiv.org/pdf/2302.13971.pdf
https://arxiv.org/pdf/2307.09288.pdf
https://blog.research.google/2022/04/pathways-language-model-palm-scaling-to.html
https://blog.research.google/2022/04/pathways-language-model-palm-scaling-to.html
https://www.mosaicml.com/blog/mpt-7b
https://falconllm.tii.ae/
https://docs.mistral.ai/
https://www.eleuther.ai/
https://github.com/EleutherAI/pythia
https://github.com/databrickslabs/dolly
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About MLC.ai

About MLC:
• Machine Learning Compilation. Designed to transform and optimize machine 

learning execution from “Development Form” to “Deployment Form”

• It minimizes integration and dependency, leverages hardware native 
acceleration and offers general optimizations

• This community offers

• LLM: https://github.com/mlc-ai/mlc-llm

• Web LLM: https://github.com/mlc-ai/web-llm

• Web Stable Diffusion: https://github.com/mlc-ai/web-stable-diffusion

Ai Model landscape

NLP & Speech:
• Language Translators
• Speech to text
• LLM

Vision
• Primitive models
• Diffusion models
• Video generation

GAP

ML Development Gap

Deployment environment

Cloud:
• More processing power
• Large memory
• Perf is key here

Mobile:
• Balanced processing power
• Limited memories
• Need balance between power and perf.

Edge
• Constrained environment
• Limited resources
• Perf/ watt is the key

• Diversified 
• Hard wares
• Environments
• Target capabilities

• Need to tailor to achieve best results.
• Should be scalable for emerging 

workloads.

What is ML Compilation

Development Form Android Deployment Form

Frameworks:
• PyTorch
• TensorFlow
• Python

Models:
• NLP
• Vision
• Speech

MLC Process

Accelerator (GPU, NPU, CPU)

Platform SDK

Applications

Weights

Execution Graph

MLC Workflow

DNN Model IR Module

Framework 
independent form

Deployment 
Form

• Transformation passed
• Target independent optimization
• Target optimization

Target code 
generation

https://github.com/mlc-ai/mlc-llm
https://github.com/mlc-ai/web-llm
https://github.com/mlc-ai/web-stable-diffusion
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Quantization with MLC • LLaMa-7b has on disk parameters of nearly 12GB.

• MLC offer various quantization options to optimize the 
parameter storage.

• For LLaMA we use q4f16_0 quantization schema.

• We use group quantization here with group size of 32.

"q4f16_0": QuantizationScheme(
        name="q4f16_0",
        linear_weight=GroupQuantizationSpec(
            dtype="float16",
            mode="int4",
            sym=True,
            storage_nbit=32,
            group_size=32,
            transpose=True,
        ),
),

Quantization Schema for LLaMa

Param: 4096 x 12288 (FP16)
96 MB On disk

Group Quantization

Quantized Value: 512 x 12288 (UINT32)
24 MB On disk

Scale:128 x 12288 (FP16)
3 MB On Disk

96MB Parameter is represented as 27 MB (24 + 3) on disk
Quantization reduces over all params size from 12GB to nearly 3.5 GB 

Param: 4096 x 12288 (FP16)

Grouped Param: 32 x 128 x 12288 (FP16)

Compute Scale per Group : 128 x 12288 (FP16)
Grouped Param: 32 x 128 x 12288 (FP16)

Scale : 128 x 12288 (FP16)
4bit conversion: 32 x 128 x 12288 (UINT32)

Scale : 128 x 12288 (FP16)
Group 4bit values: 

8 x [ 4 x 128 ] x 12288 (UINT32)

Scale : 128 x 12288 (FP16)
Pack 8 x 4bit as unit32: 
1 x 512 x 12288 (UINT32)

Scale : 128 x 12288 (FP16)
Quantized Param: 512 x 12288 (UINT32)

• MLC uses on the fly dequantization in lined into shader 
computation.

• Each group is represented by

• One scale (FP16) 

• 32 4bit (4 UINT32) values.

• MLC’s inner most loops treats each group as a single 
entity and performs computation to avoid redundant 
data access.

Quantization Algorithm

• 8 x 4bit quantized values are received as uint32.

• Dequantization here works vectors of size 8

• 8 * Shift and Mask

• 8 * Convert from int4 to FP16

• 8 * FP16 Add

• Resulting in 3 instructions per each component

• On the fly Dequantization is not impacting 
performance.

Runtime In lined dequantization
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Decode

Note: These performance numbers are measured on Community baseline on 20th July 2023. Later versions on community may have improved numbers.

Decode 8 Gen 2 8 Gen 3

Baseline (Tokens / sec) 5.3 6.4

Improved (Tokens / sec) 11.2 14.2

% Improvements 2.1 x 2.2 x

LLAMA-2 / Decode
No Of Times 

Invoked

Snapdragon 8 
Gen 2 

Baseline (us)

Snapdragon 8 
Gen 2 

Improved 
(us)

Snapdragon 
8 Gen 3 
Baseline 

(us)

Snapdragon 8 
Gen 3 

Improved 
(us)

divide_kernel 1 13 13 8 8

full_kernel 1 9 9 5 5

fused_fused_decode10_matmul8_kernel 32 73444 30667 54633 26322

fused_fused_decode11_fused_matmul9_add1_kernel 32 39029 14503 28928 13228

fused_fused_decode1_take1_kernel 1 11 11 6 6

fused_fused_decode7_fused_matmul5_cast2_kernel 1 1701 1514 1355 1214

fused_fused_decode8_matmul6_kernel 32 40871 17123 30399 14790

fused_fused_decode9_fused_matmul7_add1_kernel 32 12143 5684 9248 5040

fused_NT_matmul1_divide2_maximum1_minimum1_cast3_kernel
32

6178 5028 3312 699

fused_softmax2_cast4_kernel 32 585 589 352 227

fused_split3_silu1_multiply1_kernel 32 375 366 191 193

NT_matmul3_kernel 32 2131 1849 1737 537

rms_norm1_kernel 65 1377 1384 813 809

rotary_embedding1_kernel 64 644 645 343 337

softmax_kernel 1 171 173 110 110

split2_kernel_1 32 319 319 159 160

split2_kernel_2 32 319 320 161 161

split2_kernel 32 319 319 164 156

transpose4_kernel 64 9049 0 8453 0

Total 550 188688 80516 140377 64002
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Adreno Optimizations : Decode

Kernel Initial Global Initial Local Modified Global
Modified 
Local

% 
Improvement

fused_decode5_fused_matmul7_add1_kernel                2048:01:01 64:01:01 1024:08:01 32:08:01 49.67

fused_decode5_matmul7_kernel                           2048:01:01 64:01:01 1024:08:01 32:08:01 50.77

fused_decode6_fused_matmul9_multiply1_kerne
l           2752:01:01 64:01:01 2752:02:01 64:02:01 12.62

fused_decode6_fused_matmul9_silu1_kernel              2752:01:01 64:01:01 2752:02:01 64:02:01 7.79

fused_decode7_fused_matmul10_add1_kernel               2048:01:01 256:01:01 1024:04:01 128:04:01 52.74

Baseline TVM schedules 

• Under utilizing the concurrency for large vector to matric multiplications.

• We have split the dot product followed by reduction into parallel threads and reduced 
cooperatively. Rewrote the schedules for intensive kernels.

• Per work group local memory usage also reduced to enable more concurrent work 
groups.

These early optimizations resulted in 35% uplift at decode block level

Network architecture

• Identified the significant time taken by Transpose ops across a MatMul

• Found an opportunity to remove the Transpose and Alter MatMul schedules to work on 
original layout

• Implemented two Transformation passed that identify this pattern and replace with op 
and corresponding schedule.

• These passes improved both encode and decode.

Network optimizations resulted in 10 % uplift at decode block 
level in 8 Gen 3 and 8 Gen 2 devices.

Other minor but critical Improvements:

• Used precompiled bin loading for clKernels. Improved the load time  from 
450ms to 70ms.

• Texture (1D) promotion for arguments in selective kernels

• Temperature NDArray initialization was redundant at each token.

• Model context initialization prompt was optimized to reduce initial warmup 
time.

• LLaMa-v2 support is enhanced before community enabled v2 support.

• Support for Baichuan model (Chinese LLaMa variant).

• Schedule optimizations enabled for Baichuan model too.

Target Optimizations

• Operations in decode is mostly 1D-2D (vector to matrix) multiplications.

• By nature, these are memory bound (Vector is cached and matrix is never reused).

• Performance of decode here is directly proportional to memory bandwidth.

• In summary, we can tune the GPU frequency to get best efficiency (power-to-
performance ratio).
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Prefill / Encode

LLAMA-2 / Encode
No Of 
Times 

Invoked

Snapdragon 8 
Gen 2 

Baseline 
(us)

Snapdragon 
8 Gen 2 
Improved

(us)

Snapdragon8 
Gen 3 

Baseline 
(us)

Snapdragon 8 
Gen 3 

Improved
(us)

divide_kernel 1 13 13 8 8

extend_te_kernel 1 20 21 12 12

fused_fused_decode1_take_kernel 1 105 104 80 81

fused_fused_decode2_NT_matmul4_kernel 32 15550161 697488 10023110 461033

fused_fused_decode3_fused_NT_matmul5_add_kernel 32 691707 301002 459036 209973

fused_fused_decode4_NT_matmul6_kernel 32 27933885 1172984 18000559 735612

fused_fused_decode5_fused_NT_matmul7_add_kernel 32 1745141 537726 1150687 381043

fused_fused_decode7_fused_matmul5_cast2_kernel 1 1704 1517 1308 1302

fused_min_max_triu_te_broadcast_to_kernel 1 16 16 8 8

fused_NT_matmul_divide1_maximum_minimum_cast_kern
el 32

344268 352917 222482 228584

fused_softmax1_cast1_kernel 32 16765 16733 11344 11394

fused_split1_silu_multiply_kernel 32 10242 9862 9427 8620

NT_matmul2_kernel 32 344371 334431 223535 216529

rms_norm_kernel 65 20569 20663 14519 14668

rotary_embedding_kernel 64 6787 6770 5063 5018

slice_kernel 1 11 10 5 5

softmax_kernel 1 171 172 115 108

split_kernel_1 32 3198 3201 2120 2018

split_kernel_2 32 3200 3200 2184 2008

split_kernel 96 3195 3203 6733 2048

transpose4_kernel 96 13094 0 10202 0

transpose7_kernel 32 3206 0 2266 0

Total 680 46691829 3462033 30144803 2280072

Encode Gen 2 Gen 3

Baseline (Tokens / sec) 5.4 7.8

Improved (Tokens / sec) 71 103.8

% Improvements 13.14 x 13.3 x
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Encode / Prefill Performance

Baseline
(Tokens / sec)

Improved
(Tokens / sec)

Note: These performance numbers are measured on Community baseline on 20th July 2023. Later versions on community may have improved numbers.

Optimizations

• Prompt (encode) ops are mostly nD-2D (batch matrix to matrix) 
multiplications.

• By nature, these are ALU bound operations.

• Optimizations are driven by hand crafted OpenCL kernels to draw best 
performance possible.

• Integrated as BYOC (Bring Your Own Codegen)  to let the optimized 
kernels to co work with TVM native kernels in over all solution.
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Upcoming

Open source

• Today MLC supports wide range of LLM’s.

• Focused to improve the performance.

• Committed to upstream or share with communities. 

• Optimized Mistral-7B, Qwen-7B, Gemma are on the way.
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