Qualcom

Large Language Models on Qualcomm [®] Adreno[™] GPU Siva Rama Krishna Reddy B

Senior Staff Engineer

Qualcomm India Private Limited

Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

- About Generative AI & Large Language Models
- Challenges on Edge devices
- Baseline reference
- Performance improvement
- Upcoming

About Generative AI & Large Language Models

Discriminative AI

- Focused to learn the boundaries
- Classification, Object detection, Image quality enhancements.
- Generative AI
 - Focused to generate new data like the training data in a meaningful way.
 - Models learn the underlaying probability distribution of training data.
 - Capable of image synthesis, text generation, music and video generation.
 - Generative Adversarial Networks (GANs)
 - Variational Autoencoders (VAEs)
 - Transformers and diffusion models
- Large Language Models
 - Generative AI models trained with volumes of text data.
 - Capable of performing wide range of tasks
 - Answering, Article writing (code also), language translators, chat bots and many more

Challenges on Edge device

- Exponentially increased params
 - 7B model has 12GB of parameters.
- DDR throughput impacts the overall performance.
 - Every token processing needs all the params and context data.
- Increased ALU utilization for prompt processing.
- Additional optimizations for new operations
 - Attention layers
 - Grouped SoftMax
 - · Context or state maintenance across calls

Baseline Reference

About LLaMA from Meta

- LLaMa, A collection of Large Language Models from Meta.
- Collection of pre trained and fine-tuned models from GenAI, Meta.
- LLaMa (Feb 2023): <u>https://arxiv.org/pdf/2302.13971.pdf</u>
- LLaMa 2 (Jul 2023): <u>https://arxiv.org/pdf/2307.09288.pdf</u>
- Parameters ranging from 7B to 70B
- LLaMa-13B outperforms GPT-3 (175B) on most benchmarks
- LLaMa65B is competitive with the best models, Chinchilla-70B and PaLM-540B

Competitive Opensource LLM's

- MPT, Mosiac ML
 - https://www.mosaicml.com/blog/mpt-7b
 - 7B, 30B
- Falcon LLM, Abu Dhabi-UAE The Technology Innovation Institute (TII)
 - https://falconllm.tii.ae
 - **1**.3B, 7.5B, 40B, 180B
- Mistral 7B, Mistral Ai
 - https://docs.mistral.ai
 - 7B
- Pythia, Eleuther
 - <u>https://www.eleuther.ai</u>,
 <u>https://github.com/EleutherAl/pythia</u>
 - 70M to 12B
- Dolly, Databricks
 - https://github.com/databrickslabs/dolly
 - 3B, 6B, 7B, 12B

Competitive Private LLM's

- Palm and PaLM2:
 - Google
 - PaLM 2 is a state-of-the-art language model with improved multilingual, reasoning and coding capabilities.
 - 540B
 - https://blog.research.google/2022/04/pathwayslanguage-model-palm-scaling-to.html
- Chinchilla:
 - Company DeepMind
 - 70B
- GPT-3
 - Company OpenAl
- Claude2
 - Company Anthropic
 - 100K context windows ~ 12x of GPT-4, ~ 24x of Llama2
 - Anthropic \ Claude 2

About MLC.ai

About MLC:

- Machine Learning Compilation. Designed to transform and optimize machine • learning execution from "Development Form" to "Deployment Form"
- It minimizes integration and dependency, leverages hardware native • acceleration and offers general optimizations

MLC Process

This community offers •

What is ML Compilation

Frameworks: PyTorch

TensorFlow

Python

Models:

NLP

Vision

Speech

Development Form

- LLM: https://github.com/mlc-ai/mlc-llm ٠
- Web LLM: https://github.com/mlc-ai/web-llm •
- Web Stable Diffusion: https://github.com/mlc-ai/web-stable-diffusion •

Applications

Platform SDK

Weights

Execution Graph

ML Development Gap

Quantization with MLC

LLaMa-7b has on disk parameters of nearly 12GB.

'q4f16 0": QuantizationScheme(

Decode

LLAMA-2 / Decode	No Of Times Invoked	Snapdragon 8 Gen 2 Baseline (us)	Snapdragon 8 Gen 2 Improved (us)	Snapdragon 8 Gen 3 Baseline (us)	Snapdragon 8 Gen 3 Improved (us)
divide_kernel	1	13	13	8	8
full_kernel	1	9	9	5	5
<pre>fused_fused_decode10_matmul8_kernel</pre>	32	73444	30667	54633	26322
<pre>fused_fused_decode11_fused_matmul9_add1_kernel</pre>	32	39029	14503	28928	13228
<pre>fused_fused_decode1_take1_kernel</pre>	1	11	11	6	6
<pre>fused_fused_decode7_fused_matmul5_cast2_kernel</pre>	1	1701	1514	1355	1214
<pre>fused_fused_decode8_matmul6_kernel</pre>	32	40871	17123	30399	14790
<pre>fused_fused_decode9_fused_matmul7_add1_kernel</pre>	32	12143	5684	9248	5040
<pre>fused_NT_matmul1_divide2_maximum1_minimum1_cast3_kernel</pre>	32	6178	5028	3312	699
<pre>fused_softmax2_cast4_kernel</pre>	32	585	589	352	227
<pre>fused_split3_silu1_multiply1_kernel</pre>	32	375	366	191	193
NT_matmul3_kernel	32	2131	1849	1737	537
rms_norm1_kernel	65	1377	1384	813	809
rotary_embedding1_kernel	64	644	645	343	337
softmax_kernel	1	171	173	110	110
split2_kernel_1	32	319	319	159	160
split2_kernel_2	32	319	320	161	161
split2_kernel	32	319	319	164	156
transpose4_kernel	64	9049	0	8453	0
Total	550	188688	80516	140377	64002

Decode	8 Gen 2	8 Gen 3
Baseline (Tokens / sec)	5.3	6.4
Improved (Tokens / sec)	11.2	14.2
% Improvements	2.1 x	2.2 x

Decode Performance

(Tokens / sec) (Tokens / sec)

Adreno Optimizations : Decode

Baseline TVM schedules

- Under utilizing the concurrency for large vector to matric multiplications.
- We have split the dot product followed by reduction into parallel threads and reduced cooperatively. Rewrote the schedules for intensive kernels.
- Per work group local memory usage also reduced to enable more concurrent work groups.

				Modified	%
Kernel	Initial Global	Initial Local	Modified Global	Local	Improvement
<pre>fused_decode5_fused_matmul7_add1_kernel</pre>	2048:01:01	64:01:01	1024:08:01	32:08:01	49.67
fused_decode5_matmul7_kernel	2048:01:01	64:01:01	1024:08:01	32:08:01	50.77
<pre>fused_decode6_fused_matmul9_multiply1_kerne 1</pre>	2752:01:01	64:01:01	2752:02:01	64:02:01	12.62
fused_decode6_fused_matmul9_silu1_kernel	2752:01:01	64:01:01	2752:02:01	64:02:01	7.79
fused decode7 fused matmul10 add1 kernel	2048:01:01	256:01:01	1024:04:01	128:04:01	52.74

These early optimizations resulted in 35% uplift at decode block level

Network architecture

- Identified the significant time taken by Transpose ops across a MatMul
- Found an opportunity to remove the Transpose and Alter MatMul schedules to work on original layout
- Implemented two Transformation passed that identify this pattern and replace with op and corresponding schedule.
- These passes improved both encode and decode.

	 <pre>mod = mlc_llm.transform.FuseDecodeTranspose()(mod) # pylint: disable=not-callable</pre>
+	<pre>mod = mlc_llm.transform.FuseTranspose1Matmul()(mod)</pre>
+	<pre>mod = mlc_llm.transform.FuseTranspose2Matmul()(mod)</pre>
	 <pre>mod = mlc_llm.transform.FuseTransposeMatmul()(mod) # pylint: disable=not-callable</pre>
	<pre>mod = relax.pipeline.get_pipeline()(mod) # pylint: disable=no-value-for-parameter</pre>
	<pre>mod = mlc_llm.transform.FuseDecodeMatmulEwise(# pylint: disable=not-callable</pre>

Network optimizations resulted in 10 % uplift at decode block level in 8 Gen 3 and 8 Gen 2 devices.

Other minor but critical Improvements:

- Used precompiled bin loading for clKernels. Improved the load time from 450ms to 70ms.
- Texture (1D) promotion for arguments in selective kernels
- Temperature NDArray initialization was redundant at each token.
- Model context initialization prompt was optimized to reduce initial warmup time.
- LLaMa-v2 support is enhanced before community enabled v2 support.
- Support for Baichuan model (Chinese LLaMa variant).
- Schedule optimizations enabled for Baichuan model too.

Target Optimizations

- Operations in decode is mostly 1D-2D (vector to matrix) multiplications.
- By nature, these are memory bound (Vector is cached and matrix is never reused).
- Performance of decode here is directly proportional to memory bandwidth.
- In summary, we can tune the GPU frequency to get best efficiency (power-toperformance ratio).

Prefill / Encode

LLAMA-2 / Encode	No Of Times Invoked	Snapdragon 8 Gen 2 Baseline (us)	Snapdragon 8 Gen 2 Improved (us)	Snapdragon8 Gen 3 Baseline (us)	Snapdragon 8 Gen 3 Improved (us)
divide_kernel	1	13	13	8	8
extend_te_kernel	1	20	21	12	12
<pre>fused_fused_decode1_take_kernel</pre>	1	105	104	80	81
<pre>fused_fused_decode2_NT_matmul4_kernel</pre>	32	15550161	697488	10023110	461033
<pre>fused_fused_decode3_fused_NT_matmul5_add_kernel</pre>	32	691707	301002	459036	209973
<pre>fused_fused_decode4_NT_matmul6_kernel</pre>	32	27933885	1172984	18000559	735612
<pre>fused_fused_decode5_fused_NT_matmul7_add_kernel</pre>	32	1745141	537726	1150687	381043
<pre>fused_fused_decode7_fused_matmul5_cast2_kernel</pre>	1	1704	1517	1308	1302
<pre>fused_min_max_triu_te_broadcast_to_kernel</pre>	1	16	16	8	8
<pre>fused_NT_matmul_divide1_maximum_minimum_cast_kern el</pre>	32	344268	352917	222482	228584
<pre>fused_softmax1_cast1_kernel</pre>	32	16765	16733	11344	11394
<pre>fused_split1_silu_multiply_kernel</pre>	32	10242	9862	9427	8620
NT_matmul2_kernel	32	344371	334431	223535	216529
rms_norm_kernel	65	20569	20663	14519	14668
rotary_embedding_kernel	64	6787	6770	5063	5018
slice_kernel	1	11	10	5	5
softmax_kernel	1	171	172	115	108
split_kernel_1	32	3198	3201	2120	2018
split_kernel_2	32	3200	3200	2184	2008
split_kernel	96	3195	3203	6733	2048
transpose4_kernel	96	13094	0	10202	0
transpose7_kernel	32	3206	0	2266	0
Total	680	46691829	3462033	30144803	2280072

Encode	Gen 2	Gen 3
Baseline (Tokens / sec)	5.4	7.8
Improved (Tokens / sec)	71	103.8
% Improvements	13.14 x	13.3 x

Encode / Prefill Performance

Optimizations

- Prompt (encode) ops are mostly nD-2D (batch matrix to matrix) multiplications.
- By nature, these are ALU bound operations.
- Optimizations are driven by hand crafted OpenCL kernels to draw best performance possible.
- Integrated as BYOC (Bring Your Own Codegen) to let the optimized kernels to co work with TVM native kernels in over all solution.

Note: These performance numbers are measured on Community baseline on 20th July 2023. Later versions on community may have improved numbers.

Upcoming

Open source

- Today MLC supports wide range of LLM's.
- Focused to improve the performance.
- Committed to upstream or share with communities.
- Optimized Mistral-7B, Qwen-7B, Gemma are on the way.

Thankyou

Qualcom

Follow us on: in 🎔 🖸 🗗 🗗

For more information, visit us at: qualcomm.com & qualcomm.com/blog Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm and Adreno are trademarks or registered trademarks of Qualcomm Incorporated. Other products and brand names may be trademarks or registered trademarks of their respective owners. References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes our licensing business, QTL, and the vast majority of our patent portfolio. Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of our engineering, research and development functions, and substantially all of our products and services businesses, including our QCT semiconductor business.

Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries. Qualcomm patented technologies are licensed by Qualcomm Incorporated.