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Virtual Screening​

• Initial stages of the drug discovery process

• Ligand: small molecule with usually less than 100 
atoms

• Can be view as a graph

• Atoms as vertices

• Bond as edges

• Can be generated by chemical reactions

• Drug Candidate

https://www.ligateproject.eu/

Arachidonic Acid ligand example



Virtual Screening​

• A protein is a molecule that is composed of 
one or more chains of amino acid residues

• Tens of thousand of atoms

• Proteins perform a vast array of functions 
within organisms:

• Catalysing metabolic reactions,

• DNA replication, 

• Providing structure to cells and 
organisms

• Transporting molecules from one 
location to another.

• Drug’s target
https://www.ligateproject.eu/

A representation of the 3D 
structure of the protein 

myoglobin



Virtual Screening

• A ligand bound into empty spaces of 
a protein associated with the 
target disease can change its behaviour, 
and hence the outcome of disease.

• Virtual 
screening aims at selecting the most promising ligands
from a huge set of possible candidates

• To forward to the next stages of drug discovery



Virtual Screening
Challenges:

• Evaluate as much ligand
candidates as possible

• The bond strength depends on 
the ligand’s atoms 3D displacement when it in
teracts the with target protein

• We need to “dock” before “score” it

• A ligand can be change its shape

• Multiple way to dock the same ligand

https://www.ligateproject.eu/

Reference Unfolded

Two conformations of the Arachidonic Acid.



Dock & Score

Molecular Docking as “Relaxed” lock and key model:

• Protein considered a rigid body

• Ligand considered a flexible body

• ​A ligand is docked on target protein’s binding sites

• Multiple pose for each ligand

https://www.ligateproject.eu/

Arachidonic Acid bound to
the Cyclooxygenase active site of COX-2



Dock & Score

Additive Chemical score

• Used to evaluate likeness of ligand (pose)-pocket bond

• Takes into account Atomic interactions

• VdW,

• Lennard-Jones

• Metal bonds

• Hydrogen bonds

• Solvation effects;

https://www.ligateproject.eu/



LiGen: Ligand Generator Platform
The LiGen drug discovery framework

• Owned by Dompe Farmaceutici and co-developed by PoliMi and CINECA

• used for the discovery of drug against different pathogens

• Zika [ANTAREX], SARS-CoV-2 [EXSCALATE4COV]

LiGen processing pipeline

• Dock & score as an embarrassing parallel task

• Process each molecule in a pocket, which is a region of interest inside a protein.

• A protein can have multiple pockets and they may have different conformational states, abstracted 
as different pockets.



The LiGen Drug Discovery Pipeline

https://www.ligateproject.eu/



Towards a Portable Pipeline

• The LIGATE project aims at building a portable drug discovery pipeline

• Funded from the European High-Performance Computing Joint Undertaking Joint 
Undertaking (JU)

• HPC is heading toward specialization and extreme heterogeneity

• SYCL enables to write platform independent code, while keeping native-comparable 
performance

https://www.ligateproject.eu/



Porting from CUDA to SYCL2020

• Originally implemented in C++, then ported to OpenACC and CUDA

• 17 CUDA kernels, dozens of device functions

• Most kernels have dependency from the previous one

• Minimal overlapping

• Porting features from CUDA

• Warp-level primitives -> SYCL 2020 subgroups

• Custom reductions -> SYCL 2020 reductions

• Custom group algorithms (all_of, any_of,etc.) -> SYCL2020 group algorithms

• Dynamic parallelism -> removed without performance difference

https://www.ligateproject.eu/

Kernel 1

Kernel 3

Kernel 2

…



Exploiting SYCL 2020 Features

• Supporting both Unified Shared Memory (USM) and accessor-based memory 
management

• Sub-group shuffles and collectives allow us to write more efficient and concise 
code

• Group algorithms raise efficiency and improve performance portability among 
architectures

• Reduction native support avoid boilerplate code and improve performance

By using SYCL 2020 reduction and group algorithms we removed more than 
430 lines of code

https://www.ligateproject.eu/



Performance Tuning

• Application tuning

• Block size and number of iteration of the heaviest kernels depending on workload type

• Up to the scheduler

• Kernel tuning

• Limited tuning due to high register pressure (e.g., unrolling not effective)

• Workgroup size

• Blocking, local memory usage

• Accessors vs USM

• We developed two version of LiGen, using either Accessor or USM

https://www.ligateproject.eu/



Experimental Setup

• SYCL versions

• hipSYCL (sha 1046a78777a23ca75c6ea4e92291f1dbe36169ca)

• DPC++ (release 2021-12)

• Hardware

• Nvidia Setup

• IBM POWER9 AC922 at 2.6(3.1) GHz

• NVIDIA Volta V100 GPU

• Cuda 11.0

• AMD Setup

• Intel Xeon Gold 5218 CPU @ 2.30GHz

• AMD MI100 GPU

https://www.ligateproject.eu/



Application Performance Evaluation

https://www.ligateproject.eu/

• Optimize-fragment kernel 

• Takes up to 95% of the device time

• Called iteratively

• Subgroup reduction, then reduction 
over group, then reduction across 
groups

• Subgroup shifting and reductions

• About 420 lines of code

• High register pressure

• Hb-score kernel

• takes 2.2% of the device time

• Mostly due to group sortingRuntime per Kernel



Accessor vs USM Evaluation

https://www.ligateproject.eu/

• USM version

• memory management is similar to the CUDA 
implementation

• Buffers allocated and initialized at the start

• Deallocated all together at the end

• Accessor

• defines each buffer at the start

• Initialization is managed by the runtime

• No significant differences in the kernel implementations

• Accessor version similar performance compared to the 
USM version
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Accessors vs USM Evaluation

https://www.ligateproject.eu/

• Example with DPC++ / PTX backend, on a Tesla V100
• Accessor version (top): memory allocation and free happening across application workflow

GPU utilization

Kernels execution

Mem Allocation/Copies



Accessors vs USM Evaluation

https://www.ligateproject.eu/

• Example with DPC++ / PTX backend, on a Tesla V100
• Accessor version (top): memory allocation and free happening across application workflow
• USM version (bottom): allocation at start, deallocation at end

GPU utilization

Kernels execution

Mem Allocation/Copies
Mem free



Performance Portability Evaluation

https://www.ligateproject.eu/
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LiGen Accessor: 3 kernels (optimize, align, hb-score)
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• 14 kernels show excellent performance portability

• On NVIDIA V100: portable SYCL version vs 
manually optimized CUDA only 7% faster

• High performance on both V100 and M100

• Three kernels have lower performance portability

• Optimize and align kernel 

• high register pressure

• Hb-score kernel

• sorting kernel



Conclusion

• LiGen 3.0 relies on SYCL to provide performance portability

• All CUDA features ported to SYCL 

• successfully runs on a wide range of hardware

• SYCL 2020 features reduced LiGen code complexity

• reduction and group algorithms allowed us to remove more than 430 lines of code

• accessors and USM version, very similar in performance

• Performance portability study

• excellent performance portability on 14 out of 17 kernels

• manually-tuned CUDA only 7% faster than portable SYCL on V100

• issues with three kernels because of

• high register pressure (new Ligen 4.0 pipeline will attack this problem)

• customized sorting function

https://www.ligateproject.eu/
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