
© 2022 Arm

Justas Janickas, Anastasia Stulova
10-12 May 2022

C++ for OpenCL 2021
IWOCL’22

2 © 2022 Arm

Motivation
• C++ for OpenCL kernel language [1] brings many C++ language features to OpenCL,

while keeping backward compatibility with OpenCL C.
• Version 1.0 was built on top of C++17 and OpenCL 2.0.

• Evolution of C++ for OpenCL alongside OpenCL standard is key.
• Main design goal of C++ for OpenCL 2021 is compatibility with OpenCL 3.0 (released in

Sep 2020).
• clang-14 provides complete experimental support of OpenCL C 3.0.
• C++ for OpenCL 2021 support in clang is built on top of existing clang features for

maximal code reuse and backward compatibility guarantee.

3 © 2022 Arm

• Key differences to OpenCL C 3.0:
• Many native C++ language features are enabled:

– Object oriented or generic programming.
• In common behaviour:

– Variadic macros can be used as in C++17.
– Atomic types can be used with built-in operators if the sequential consistency memory model is supported.
– Blocks are not supported.
– NULL is defined as nullptr rather than ((void*)0).
– C++ for OpenCL limits usage of some C-specific features:

§ implicit type conversions are stricter.
§ restrict keyword is not supported.
§ goto statements follow the rules from C++17.

• Key differences to C++ for OpenCL 1.0:
• C++ for OpenCL 2021 provides all optional features from OpenCL C 3.0 including but not limited to:

– generic address space, program scope variables in global address space, sequential consistency memory
model, etc.

• Address space removal type trait introduced.

C++ for OpenCL 2021 overview

4 © 2022 Arm

• Experimental support released in clang-14.
• Extended command line flag for language version:

clang++ -cl-std=clc++2021 --target=spirv64 mykernel.clcpp
• Implicitly defined version macros:

__CL_CPP_VERSION_2021__ and __OPENCL_CPP_VERSION__ set to 202100.
• Further unified with OpenCL C

• getOpenCLCompatibleVersion() helper performs mapping from C++ for OpenCL or OpenCL C version to
a corresponding compatible OpenCL version.

• Extended optionality of generic address space to C++ specific constructs:
• e.g., implicit pointer to object parameters, special member functions.
• getDefaultOpenCLPointeeAddrSpace() helper determines whether generic or private address space

should be deduced by the compiler.

• Added address space removal utility
• Based on feedback from LLVM community.

Implementation in Clang

5 © 2022 Arm

struct C {
void foo(int *par);

#ifndef __opencl_c_generic_address_space

// W/o generic address space (GAS)
// support an overload is needed for
// objects in __global address space.
void foo(int *par) __global;

#endif

};
__global C globC{};
void bar() {
__private C locC;
int i;

locC.foo(&i);
globC.foo(&i);// error w/o GAS support.

}

Demonstration – generic address spaces optionality

6 © 2022 Arm

struct C {
void foo(int *par);

#ifndef __opencl_c_generic_address_space

// W/o generic address space (GAS)
// support an overload is needed for
// objects in __global address space.
void foo(int *par) __global;

#endif

};
__global C globC{};
void bar() {
__private C locC;
int i;

locC.foo(&i);
globC.foo(&i);// error w/o GAS support.

}

Demonstration – generic address spaces optionality

template<typename T> void helper(T *par) {
#ifdef __opencl_c_generic_address_space
// If GAS is supported T is deduced to it.
// As local variables can not be declared
// with GAS an address space qualifiers
// needs to be removed.
typename __remove_address_space<T>::type var;

#else
T var;

#endif
}
void C::foo(int *par) {
helper(par);

}
#ifndef __opencl_c_generic_address_space
void C::foo(int *par) __global {
helper(par);

}
#endif

7 © 2022 Arm

Conclusions and feedback
• More details about the new versions can be found in the

unified language documentation:
• https://www.khronos.org/opencl/assets/CXX_for_OpenCL.html

• C++ for OpenCL 2021 is implemented in clang-14 as an experimental feature and it
provides compatibility with OpenCL C 3.0 and C++17.
• https://clang.llvm.org/docs/OpenCLSupport.html#cxx-for-opencl-impl

• Developers are invited for experimenting and contributing.
• Feedback helps us to identify bugs, missing features and shape the language evolution.

• Future: more effort is needed on expanding test coverage towards the final release of
C++ for OpenCL 2021.

© 2022 Arm

Thank You
Danke

Gracias
谢谢

ありがとう
Asante
Merci

감사합니다
ध"यवाद

Kiitos
ارًكش

ধন#বাদ
הדות

