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• In the case of SAD on GPU, vector width 
4 results in a speedup of 3.4, and vector 
width 16 results in 6.9X speedup
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C++ for OpenCL compilation flow

• C++ for OpenCL was announced in 2020, but 
without the support of the standard library as 
stated in the C++ standard.

• We explore the use of execution policy as in 
the C++ parallel library (focused on 
execution::unseq from C++20).

• Inspired by OpenCL vector, this paper supports 
C++ template of execution::unseq based on 
OpenCL vector.

• This for_each call may be vectorized.

• OpenCL vector are mapped to LLVM vector 
in LLVM IR layer.

This step defines the types as follows and a global 
object unseq of type unsequenced_policy 
accordingly.

Overload functions with execution policy types.
OpenCL kernel with execution policy

Using directive to vector
• Clang would then inline the function object call 

operator as in f(*first) and vectorize the loop 
with clang directive.

• The resulting LLVM bitcode would contain 
LLVM vector types .

• OpenCL vector types also get lowered to 
LLVM vector type.
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