
Enabling the Use of C++20 Unseq Execution 
Policy for OpenCL

Po-Yao Chang, Tai-Liang Chen, and Jenq-Kuen Lee
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

{pychang, tlchen}@pllab.cs.nthu.edu.tw, jklee@cs.nthu.edu.tw

Procedural StepsMotivation

Compilation Flow

Experimental Results

Define unseq object

Step2

Step3

Unseq with OpenCL Vector

Step1

• In the case of SAD on GPU, vector width 
4 results in a speedup of 3.4, and vector 
width 16 results in 6.9X speedup

sp
ee
du

p

C++ for OpenCL compilation flow

• C++ for OpenCL was announced in 2020, but 
without the support of the standard library as 
stated in the C++ standard.

• We explore the use of execution policy as in 
the C++ parallel library (focused on 
execution::unseq from C++20).

• Inspired by OpenCL vector, this paper supports 
C++ template of execution::unseq based on 
OpenCL vector.

• This for_each call may be vectorized.

• OpenCL vector are mapped to LLVM vector 
in LLVM IR layer.

This step defines the types as follows and a global 
object unseq of type unsequenced_policy 
accordingly.

Overload functions with execution policy types.
OpenCL kernel with execution policy

Using directive to vector
• Clang would then inline the function object call 

operator as in f(*first) and vectorize the loop 
with clang directive.

• The resulting LLVM bitcode would contain 
LLVM vector types .

• OpenCL vector types also get lowered to 
LLVM vector type.

1 1 1 1 1 1 1

2.7

1.1
1.7

3.4

1.7 1.5 1.3

3.1

1

1.8

6.9

0.7

3.25

1.5

0

1

2

3

4

5

6

7

8

1D convolution on
CPU

1D convolution on
GPU

SAD on CPU SAD on GPU bilateralFilter_8u permute col2im
Baseline vector width 4 vector width 16


