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Snapshot of the instantaneous flowfield for an NM-80 rotor using 
the hybrid ExaWind simulation solver suite. The image shows the 
tip vortices rendered using q-criterion and the contour colors show 
the magnitude of the velocity field.
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AMReX Overview
AMReX is used by numerous applications in national labs, 
academia and industry, including the following ECP projects

• ExaSky (cosmology)

• ExaStar (astrophysics)

• ExaWind (wind plant)

• MFiX-Exa (carbon capture)

• Pele (combustion)

• WarpX (accelerator)

AMReX is also being used to develop software tools in the 
greater community:

• HPCToolkit testing on Tulip and Iris

• Intel Performance Tools testing on Iris and DevCloud

• Framework for building parallel, block-structured 
adaptive mesh refinement (AMR) applications

• Co-Design Center in the U.S. Department Of 
Energy’s Exascale Computing Project (ECP)

• Key features:

• Subcycling in time for time-dependent PDEs

• Support for particles

• Embedded boundary (EB) representations of 
complex geometries

• Linear solvers

• Parallel and asynchronous I/O

• MPI+X, where X is OpenMP, MPI, CUDA, HIP, and now 
DPC++

• Run on machines from laptop to supercomputers

• https://amrex-codes.github.io/amrex/

https://amrex-codes.github.io/amrex/


Heterogeneous Computing

AMReX’s main supercomputer targets:

• Different architectures usually require different programming models

• AMReX writes platform specific code using CUDA, SYCL and HIP, so 
that users can write optimally performant, fully portable applications



AMReX - Data Structures

• Computational domain on each AMR 
level is decomposed into a union of 
rectangular domains
• Hierarchy of logically rectangular grids

• Each level has Boxes: MultiFab

• Each Box’s data are in a multi-dimensional
array: Fab

• Non-owning accessor of Fab: Array4

Example of three levels AMR grids

template <typename T> struct Array4 {
T* p;
//multi-dimensional array bounds

}; 



AMReX - Iterator over Grids

• AMReX provides an iterator, MFIter for 
looping over the Boxes in MultiFabs

• Example with 5 Boxes. Kernels are 
launched for each Box using 3 ordered 
queues

• Launches in the same iteration (on the 
same Box) are placed in the same ordered 
queue, maintaining order in a simple way.

• Benefit of asynchronicity can be obtained 
with multiple queues



AMReX - ParallelFor

• Kernels are typically launched with 
amrex::ParallelFor

• The Box and int arguments are used to
determine the number of threads to launch

• The captured a and b are trivial type 
containing non-owning pointers

• The memory resource management is 
handled by other classes using Unified Shared 
Memory in SYCL

• The DPC++ backend uses 
sycl::parallel_for

• amrex::ParallelFor is portable on CPUs 
and different GPU devices

//Launch over Box
ParallelFor(box, [=](int i, int j, int k)
{

a(i,j,k) *= b(i,j,k);
};

//Launch over Box with components
ParallelFor(box, N, 

[=](int i, int j, int k, int n)
{

a(i,j,k,n) *= b(i,j,k);
});

//Launch over number of elements
ParallelFor (N, [=] (int i)
{

a[i] *= b[i];
}); 



AMReX - Reduction and Scan

• AMReX provides functionality for

• Reduction on a MultiFab (a set of multi-
D arrays)

• Reduction on a Fab (a multi-D array)

• Building custom reduction operations on 
user data structures

• Prefix-sum functions

• DPC++ subgroup extension has allowed us to 
write efficient reduction and scan functions 
using subgroup primitives such as 
shuffle_down, shuffle_up and
shuffle_xor

Note: Often need to do reduction on sections of a 
set of multi-dimensional arrays. Thus, the high-
level SYCL Reduction APIs for 1D array do not 
work

//Min, Max and Sum reduction over a MultiFab

MultiFab mf(…);

ReduceOps<ReduceMin,ReduceMax,ReduceSum>reduce_op;

ReduceData<Real,Real,Real> reduce_data (reduce_op);

using ReduceTuple = typename decltype(reduce_data)::Type;

for (MFIter mfi(mf); mfi.isValid(); ++mfi) {

auto const& a = mf.array();

reduce_op.eval(mfi.box(),

[=] (int i, int j, int k) -> ReduceTuple {

return {a(i,j,k),a(i,j,k),a(i,j,k)};

});

}

ReduceTuple hv = reduce_data.value();

std::cout << “ Min: ” << get<0>(hv)

<< “ Max: ” << get<1>(hv)

<< “ Sum: “ << get<2>(hv) << “\n”;



AMReX Example

AMReX-based application code Code generated by DPC++ Backend

MultiFab mfa(…), mfb(…);

for (MFIter mfi(mf); mfi.isValid(); ++mfi) 

{

auto a = mfa.array(mfi);

auto b = mfb.array(mfi);

amrex::ParallelFor(mfi.box(),

[=](int i, int j, int k){

a(i, j, k) += b(i, j, k);

});

}

template <typename L>
void ParallelFor(Box const& box, L&& f) noexcept
{

……..
auto& q = Gpu::Device::streamQueue();
try {

q.submit([&](auto &h) {
h.parallel_for(nd_range<1>(range<1>(nthreads_total),

range<1>(nthreads_per_block)),
[=](nd_item<1> item)
AMREX_REQUIRE_SUBGROUP_SIZE(Gpu::Device::warp_size)
{

……… // Calc indexing and launch the lambda.
});

});
}
catch (sycl::exception const& ex) {

amrex::Abort(std::string("ParallelFor: ") +
ex.what() + "!!!!!");

}
……
}



DPC++ Features used in AMReX

• Features that were available in DPC++ and now in SYCL2020
• Unified Shared Memory provides flexibility and fits naturally with other AMReX

backends
• In-order queues useful as a lot of operations in AMReX are naturally ordered
• Sub-groups shuffles and collectives allows us to write custom reduction functions in 

an efficient way
• Host task callback helps with memory management of temporary arrays
• Device wide memory fence for synchronization in ParallelScan and similar funcs

• Unique DPC++/oneAPI Extensions used by AMReX
• CXX standard library support - Enables the usage of a set of C and C++ std functions 

such as sqrt, fabs, sin, cos, etc., from std namespace in device code 
• Random Number Generation and Fast Fourier Transforms (via oneMKL Library) –

Provides DPC++ interfaces for Uniform, Gaussian, Poisson distribution and 1,2 and 3-
D FFT in device code



oneAPI/SYCL Specification Influence

• Level 0 Sysman API to query free memory on device - zesMemoryGetBandwidth

• Sub-group extension to set device’s primary subgroup size attribute -
SYCL_INTEL_sub_group

• Free functions to get id, item, nd_item, group, sub_group instances globally -
SYCL_INTEL_free_function_queries

• Device APIs for random number generation – oneMKL Random Number 
Generators

• Reported a SYCL specification bug on sycl::abs being incompatible with C++ 
std::abs or C stdlib abs

https://spec.oneapi.com/level-zero/latest/sysman/api.html?highlight=memorygetstate#zesmemorygetbandwidth
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/SubGroup/SYCL_INTEL_sub_group.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/FreeFunctionQueries/SYCL_INTEL_free_function_queries.asciidoc
https://spec.oneapi.com/versions/latest/elements/oneMKL/source/domains/rng/engines-basic-random-number-generators.html#onemkl-rng-engines-basic-random-number-generators


Intel® oneAPI Product Influence

• Support for recursive function calls in device code

• Support for assert() in device code

• Increase in DPC++ kernel argument size from 1KB

• DPC++ interface to query device UUID which is available in Level0 as 
ze_device_uuid_t and OpenCL as cl_khr_device_uuid

https://spec.oneapi.com/versions/0.5.0/oneL0/api/structze__device__uuid__t.html#_CPPv416ze_device_uuid_t
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_Ext.html#cl_khr_device_uuid


Features Missing in DPC++/SYCL - 1
Local memory in device code
• Inconvenient to use local memory -

requires object or pointer to be 
passed where local memory is used

• Workaround by creating a local 
accessor outside the kernel and 
capturing it

• Intel’s extension proposal 
SYCL_INTEL_local_memory partially 
addresses the concern but still has 
the restriction that group-local 
variables must be defined at kernel 
functor scope

// Assume this function is in a header file included here.
inline void transpose (int* p)
{

// This is what CUDA could do.
__shared__ int shared_data[GROUP_SIZE];
int id = threadIdx.x;
shared_data[id] = p[id];
__syncthreads();
p[id] = shared_data[GROUP_SIZE-1-id];

}

int main (int argc, char* argv[])
{

queue q;

int* p = (int*)malloc_device(..);

q.submit([&] (auto &h) {
h.parallel_for(nd_range<1>(..), [=] (nd_item<1> item)
{

int id = item.get_global_id(0);
p[id] = id;

});
});

q.submit([&] (auto &h) {
h.parallel_for(nd_range<1>(..), [=] (nd_item<1> item)
{

transpose(p);
});

});

q.wait();
free(p, q.get_context());

}

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/LocalMemory/SYCL_INTEL_local_memory.asciidoc


Features Missing in DPC++/SYCL - 2
Global Device Variables
• Many AMReX applications have the definition 

and declaration of the global variables spread 
over different files or translation units

• No support for accessing global variables in 
device memory and a memcpy function for 
copying data from host to the global variable

• Supported by CUDA and HIP

• AMReX had to re-implement random number 
generation API to workaround the need for a 
global device variable that is implemented such 
that users are unaware of it

#include <CL/sycl.hpp>
…..
using namespace sycl;

inline __attribute__((opencl_constant)) int d_a = -1;
inline __attribute__((opencl_constant)) int d_b[] = { -1,-1,-1,-1 };

int main(int argc, char* argv[])
{

queue q(gpu_selector{});

int h_a = 3;
std::vector<int> h_b{ 10,20,30,40 };
GPU_MEMCPY_TO_SYMBOL(d_a, &h_a, sizeof(int));
GPU_MEMCPY_TO_SYMBOL(d_b, h_b, sizeof(int)*4);

int* data = static_cast<int*>(malloc_shared<int>(4 * 
sizeof(int), q));

{
q.parallel_for(1, [=](id<1> i) {

data[0] = d_a;
data[1] = d_b[0];
….
}).wait();

}
std::cout << data[0] << ", " << data[1] << ", " << data[2] << ", 

" << data[3] << std::endl;
}



Current Status of AMReX DPC++ Backend

• All major AMReX capabilities - mesh, particle, embedded boundary, system 
linear solvers, reduction, random number generation are supported in 
DPC++ backend.

• Extensive testing done using existing tutorials and tests in AMReX and 
confirmed they work as expected 

• ECP codes MFiX-Exa, WarpX, Nyx, AMR-Wind and PeleC have successfully 
run workloads with DPC++

• Actively working with AMReX users, ECP and the broader community to 
prepare to achieve scientific excellence on Aurora



Summary

• AMReX has chosen DPC++ as its backend for Intel GPUs.
• Successfully ported all major capabilities to DPC++ thanks to the power of 

C++, SYCL and DPC++ language extensions.
• DPC++ has enabled us to create an abstraction layer between the backend 

and the application. This provides existing AMReX codes with performance 
portability.

• Identified several limitations of DPC++ and have filed feature requests.
• We are looking forward to running on Aurora and other Intel GPU systems 

using DPC++ and testing cross platform capabilities on NVIDIA and AMD 
GPUs.

• Thanks to Intel® DevCloud and ANL’s JLSE for providing resources for the 
development.
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