
Experiences Supporting 
DPC++ in AMReX

IWOCL & SYCLCon 2021

Weiqun Zhang, Kevin Gott

Lawrence Berkeley National Labs

Sravani Konda (Presenter), Dunni Aribuki, Christopher Lishka

Intel Corporation



Contents

• AMReX Overview

• DPC++ Features used in AMReX

• oneAPI/SYCL Specification and 
Product Influence

• Features missing in DPC++/SYCL

• Current Status

• Summary

Snapshot of the instantaneous flowfield for an NM-80 rotor using 
the hybrid ExaWind simulation solver suite. The image shows the 
tip vortices rendered using q-criterion and the contour colors show 
the magnitude of the velocity field.

Team: Ganesh Vijayakumar, Mike Brazell, Shreyas Ananthan, 
Ashesh Sharma, Jay Sitaraman, Ann Almgren, Weiqun Zhang, Mike 
Sprague



AMReX Overview
AMReX is used by numerous applications in national labs, 
academia and industry, including the following ECP projects

• ExaSky (cosmology)

• ExaStar (astrophysics)

• ExaWind (wind plant)

• MFiX-Exa (carbon capture)

• Pele (combustion)

• WarpX (accelerator)

AMReX is also being used to develop software tools in the 
greater community:

• HPCToolkit testing on Tulip and Iris

• Intel Performance Tools testing on Iris and DevCloud

• Framework for building parallel, block-structured 
adaptive mesh refinement (AMR) applications

• Co-Design Center in the U.S. Department Of 
Energy’s Exascale Computing Project (ECP)

• Key features:

• Subcycling in time for time-dependent PDEs

• Support for particles

• Embedded boundary (EB) representations of 
complex geometries

• Linear solvers

• Parallel and asynchronous I/O

• MPI+X, where X is OpenMP, MPI, CUDA, HIP, and now 
DPC++

• Run on machines from laptop to supercomputers

• https://amrex-codes.github.io/amrex/

https://amrex-codes.github.io/amrex/


Heterogeneous Computing

AMReX’s main supercomputer targets:

• Different architectures usually require different programming models

• AMReX writes platform specific code using CUDA, SYCL and HIP, so 
that users can write optimally performant, fully portable applications



AMReX - Data Structures

• Computational domain on each AMR 
level is decomposed into a union of 
rectangular domains
• Hierarchy of logically rectangular grids

• Each level has Boxes: MultiFab

• Each Box’s data are in a multi-dimensional
array: Fab

• Non-owning accessor of Fab: Array4

Example of three levels AMR grids

template <typename T> struct Array4 {
T* p;
//multi-dimensional array bounds

}; 



AMReX - Iterator over Grids

• AMReX provides an iterator, MFIter for 
looping over the Boxes in MultiFabs

• Example with 5 Boxes. Kernels are 
launched for each Box using 3 ordered 
queues

• Launches in the same iteration (on the 
same Box) are placed in the same ordered 
queue, maintaining order in a simple way.

• Benefit of asynchronicity can be obtained 
with multiple queues



AMReX - ParallelFor

• Kernels are typically launched with 
amrex::ParallelFor

• The Box and int arguments are used to
determine the number of threads to launch

• The captured a and b are trivial type 
containing non-owning pointers

• The memory resource management is 
handled by other classes using Unified Shared 
Memory in SYCL

• The DPC++ backend uses 
sycl::parallel_for

• amrex::ParallelFor is portable on CPUs 
and different GPU devices

//Launch over Box
ParallelFor(box, [=](int i, int j, int k)
{

a(i,j,k) *= b(i,j,k);
};

//Launch over Box with components
ParallelFor(box, N, 

[=](int i, int j, int k, int n)
{

a(i,j,k,n) *= b(i,j,k);
});

//Launch over number of elements
ParallelFor (N, [=] (int i)
{

a[i] *= b[i];
}); 



AMReX - Reduction and Scan

• AMReX provides functionality for

• Reduction on a MultiFab (a set of multi-
D arrays)

• Reduction on a Fab (a multi-D array)

• Building custom reduction operations on 
user data structures

• Prefix-sum functions

• DPC++ subgroup extension has allowed us to 
write efficient reduction and scan functions 
using subgroup primitives such as 
shuffle_down, shuffle_up and
shuffle_xor

Note: Often need to do reduction on sections of a 
set of multi-dimensional arrays. Thus, the high-
level SYCL Reduction APIs for 1D array do not 
work

//Min, Max and Sum reduction over a MultiFab

MultiFab mf(…);

ReduceOps<ReduceMin,ReduceMax,ReduceSum>reduce_op;

ReduceData<Real,Real,Real> reduce_data (reduce_op);

using ReduceTuple = typename decltype(reduce_data)::Type;

for (MFIter mfi(mf); mfi.isValid(); ++mfi) {

auto const& a = mf.array();

reduce_op.eval(mfi.box(),

[=] (int i, int j, int k) -> ReduceTuple {

return {a(i,j,k),a(i,j,k),a(i,j,k)};

});

}

ReduceTuple hv = reduce_data.value();

std::cout << “ Min: ” << get<0>(hv)

<< “ Max: ” << get<1>(hv)

<< “ Sum: “ << get<2>(hv) << “\n”;



AMReX Example

AMReX-based application code Code generated by DPC++ Backend

MultiFab mfa(…), mfb(…);

for (MFIter mfi(mf); mfi.isValid(); ++mfi) 

{

auto a = mfa.array(mfi);

auto b = mfb.array(mfi);

amrex::ParallelFor(mfi.box(),

[=](int i, int j, int k){

a(i, j, k) += b(i, j, k);

});

}

template <typename L>
void ParallelFor(Box const& box, L&& f) noexcept
{

……..
auto& q = Gpu::Device::streamQueue();
try {

q.submit([&](auto &h) {
h.parallel_for(nd_range<1>(range<1>(nthreads_total),

range<1>(nthreads_per_block)),
[=](nd_item<1> item)
AMREX_REQUIRE_SUBGROUP_SIZE(Gpu::Device::warp_size)
{

……… // Calc indexing and launch the lambda.
});

});
}
catch (sycl::exception const& ex) {

amrex::Abort(std::string("ParallelFor: ") +
ex.what() + "!!!!!");

}
……
}



DPC++ Features used in AMReX

• Features that were available in DPC++ and now in SYCL2020
• Unified Shared Memory provides flexibility and fits naturally with other AMReX

backends
• In-order queues useful as a lot of operations in AMReX are naturally ordered
• Sub-groups shuffles and collectives allows us to write custom reduction functions in 

an efficient way
• Host task callback helps with memory management of temporary arrays
• Device wide memory fence for synchronization in ParallelScan and similar funcs

• Unique DPC++/oneAPI Extensions used by AMReX
• CXX standard library support - Enables the usage of a set of C and C++ std functions 

such as sqrt, fabs, sin, cos, etc., from std namespace in device code 
• Random Number Generation and Fast Fourier Transforms (via oneMKL Library) –

Provides DPC++ interfaces for Uniform, Gaussian, Poisson distribution and 1,2 and 3-
D FFT in device code



oneAPI/SYCL Specification Influence

• Level 0 Sysman API to query free memory on device - zesMemoryGetBandwidth

• Sub-group extension to set device’s primary subgroup size attribute -
SYCL_INTEL_sub_group

• Free functions to get id, item, nd_item, group, sub_group instances globally -
SYCL_INTEL_free_function_queries

• Device APIs for random number generation – oneMKL Random Number 
Generators

• Reported a SYCL specification bug on sycl::abs being incompatible with C++ 
std::abs or C stdlib abs

https://spec.oneapi.com/level-zero/latest/sysman/api.html?highlight=memorygetstate#zesmemorygetbandwidth
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/SubGroup/SYCL_INTEL_sub_group.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/FreeFunctionQueries/SYCL_INTEL_free_function_queries.asciidoc
https://spec.oneapi.com/versions/latest/elements/oneMKL/source/domains/rng/engines-basic-random-number-generators.html#onemkl-rng-engines-basic-random-number-generators


Intel® oneAPI Product Influence

• Support for recursive function calls in device code

• Support for assert() in device code

• Increase in DPC++ kernel argument size from 1KB

• DPC++ interface to query device UUID which is available in Level0 as 
ze_device_uuid_t and OpenCL as cl_khr_device_uuid

https://spec.oneapi.com/versions/0.5.0/oneL0/api/structze__device__uuid__t.html#_CPPv416ze_device_uuid_t
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_Ext.html#cl_khr_device_uuid


Features Missing in DPC++/SYCL - 1
Local memory in device code
• Inconvenient to use local memory -

requires object or pointer to be 
passed where local memory is used

• Workaround by creating a local 
accessor outside the kernel and 
capturing it

• Intel’s extension proposal 
SYCL_INTEL_local_memory partially 
addresses the concern but still has 
the restriction that group-local 
variables must be defined at kernel 
functor scope

// Assume this function is in a header file included here.
inline void transpose (int* p)
{

// This is what CUDA could do.
__shared__ int shared_data[GROUP_SIZE];
int id = threadIdx.x;
shared_data[id] = p[id];
__syncthreads();
p[id] = shared_data[GROUP_SIZE-1-id];

}

int main (int argc, char* argv[])
{

queue q;

int* p = (int*)malloc_device(..);

q.submit([&] (auto &h) {
h.parallel_for(nd_range<1>(..), [=] (nd_item<1> item)
{

int id = item.get_global_id(0);
p[id] = id;

});
});

q.submit([&] (auto &h) {
h.parallel_for(nd_range<1>(..), [=] (nd_item<1> item)
{

transpose(p);
});

});

q.wait();
free(p, q.get_context());

}

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/LocalMemory/SYCL_INTEL_local_memory.asciidoc


Features Missing in DPC++/SYCL - 2
Global Device Variables
• Many AMReX applications have the definition 

and declaration of the global variables spread 
over different files or translation units

• No support for accessing global variables in 
device memory and a memcpy function for 
copying data from host to the global variable

• Supported by CUDA and HIP

• AMReX had to re-implement random number 
generation API to workaround the need for a 
global device variable that is implemented such 
that users are unaware of it

#include <CL/sycl.hpp>
…..
using namespace sycl;

inline __attribute__((opencl_constant)) int d_a = -1;
inline __attribute__((opencl_constant)) int d_b[] = { -1,-1,-1,-1 };

int main(int argc, char* argv[])
{

queue q(gpu_selector{});

int h_a = 3;
std::vector<int> h_b{ 10,20,30,40 };
GPU_MEMCPY_TO_SYMBOL(d_a, &h_a, sizeof(int));
GPU_MEMCPY_TO_SYMBOL(d_b, h_b, sizeof(int)*4);

int* data = static_cast<int*>(malloc_shared<int>(4 * 
sizeof(int), q));

{
q.parallel_for(1, [=](id<1> i) {

data[0] = d_a;
data[1] = d_b[0];
….
}).wait();

}
std::cout << data[0] << ", " << data[1] << ", " << data[2] << ", 

" << data[3] << std::endl;
}



Current Status of AMReX DPC++ Backend

• All major AMReX capabilities - mesh, particle, embedded boundary, system 
linear solvers, reduction, random number generation are supported in 
DPC++ backend.

• Extensive testing done using existing tutorials and tests in AMReX and 
confirmed they work as expected 

• ECP codes MFiX-Exa, WarpX, Nyx, AMR-Wind and PeleC have successfully 
run workloads with DPC++

• Actively working with AMReX users, ECP and the broader community to 
prepare to achieve scientific excellence on Aurora



Summary

• AMReX has chosen DPC++ as its backend for Intel GPUs.
• Successfully ported all major capabilities to DPC++ thanks to the power of 

C++, SYCL and DPC++ language extensions.
• DPC++ has enabled us to create an abstraction layer between the backend 

and the application. This provides existing AMReX codes with performance 
portability.

• Identified several limitations of DPC++ and have filed feature requests.
• We are looking forward to running on Aurora and other Intel GPU systems 

using DPC++ and testing cross platform capabilities on NVIDIA and AMD 
GPUs.

• Thanks to Intel® DevCloud and ANL’s JLSE for providing resources for the 
development.



THANK YOU



Notices & Disclaimers
Intel technologies may require enabled hardware, software or service activation. Learn more at intel.com or from the OEM or retailer.

Your costs and results may vary.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These 
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on 
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to 
Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction 
sets covered by this notice. Notice Revision #20110804. https://software.intel.com/en-us/articles/optimization-notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors 
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that 
product when combined with other products. See backup for configuration details. For more complete information about performance and benchmark results, visit 
www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or 
component can be absolutely secure.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as 
any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

