
AdaptiveCpp Stdpar: C++ Standard Parallelism 
Integrated Into a SYCL Compiler
 

Aksel Alpay, Universität Heidelberg
Aksel Alpay, Universität Heidelberg, Vincent Heuveline, Universität Heidelberg



Can heterogeneous computing be expressed directly with C++?

Note that SYCL asks a closely related question:

Can heterogeneous computing be expressed with pure C++ syntax, and an
additional C++ API?

and is thus a continuation of SYCL’s line of thought!

1 / 32



▶ C++ 17 parallel STL (PSTL) provides mechanisms to express data parallel
computation: std::for_each, std::transform, std::transform_reduce, std::
fill, std::copy…

1 #include <algorithm >
2 #include <execution >
3

4

5 std::vector <T> data = ...
6 std::for_each(Policy , data.begin(), data.end(), [](auto& x){ x += 1;});

Policy may be:
▶ std::execution::seq – algorithm must be executed sequentially
▶ std::execution::par – algorithm may be parallelized
▶ std::execution::par_unseq – algorithm may be parallelized and vectorized. Only

vectorization-safe code is allowed inside the algorithm (e.g. no locks)

2 / 32



▶ Especially the par_unseq policy maps well to data-parallel accelerators like GPUs
▶ It is attractive to consider offloading such data parallel C++ constructs to data

parallel accelerators
▶ Lower barrier of entry into heterogeneous computing
▶ Highly idiomatic
▶ Perhaps get speedup for existing regular C++ code simply by recompiling with

offloading compiler?

▶ This programming model is typically referred to as stdpar (standard parallelism)
▶ Stdpar as offloading model was notably pioneered by NVIDIA’s nvc++ compiler for

NVIDIA hardware
▶ Recently, other vendors have been proposing their own solutions: AMD

roc-stdpar, Intel icpx -fsycl-pstl-offload=gpu
▶ In a similar time frame, the AdaptiveCpp project also started working on stdpar

3 / 32



Stdpar implementations

Typical stdpar implementation design: Vendor model compiler → vendor model
algorithm library
▶ nvc++ → thrust (CUDA)
▶ roc-stdpar → rocThrust (HIP)
▶ icpx -fsycl-pstl-offload=gpu → oneDPL (SYCL)

Additionally,
▶ Compilers generally unaware of the stdpar model except to enable basic

prerequisistes (memory management, kernel outlining)
▶ Once the code has been compiled, existing stdpar compilers generally offload

unconditionally

4 / 32



Our contributions

Meet AdaptiveCpp stdpar: Stdpar support integrated into the AdaptiveCpp SYCL
implementation.

▶ First stdpar implementation that is both open-source and based on SYCL;
▶ First stdpar implementation to demonstrate performance across Intel, NVIDIA

and AMD GPUs;
▶ First stdpar implementation to diverge from the library-focused design for

performance and functionality benefits
▶ Tighter integration of the stdpar model with the compiler
▶ Additional, new optimizations/features, including synchronization elision,

automatic prefetching of data, an offload heuristic and a pointer validation layer

▶ Substantial perf improvements over other stdpar compilers

5 / 32



Stdpar implementations in
comparison

Implementation Supported hardware Open source? Based on
NVC++ CPUs,NVIDIA GPUs No CUDA+thrust
roc-stdpar AMD GPUs Yes HIP+rocThrust
icpx Intel (others?) No SYCL+oneDPL
AdaptiveCpp CPUs, Intel GPU, Yes SYCL

NVIDIA GPU, AMD GPU +own algorithms library
+compiler extensions
+runtime extensions

▶ AdaptiveCpp stdpar is not focused on hardware from one vendor
▶ By default generates a universal binary that targets all supported devices

(CPUS/Intel GPUs/NVIDIA GPUs/AMD GPUs)
▶ Start app development in high-level C++ standard parallelism, progressively move

to SYCL as more control is needed for optimization
6 / 32



Implementation

7 / 32



General architecture

▶ Provide custom algorithm, execution, numeric headers
▶ Add new overloads for offload-capable algorithms for par_unseq policy

▶ Set of offload-aware algorithms is still smaller than for competing solutions¹
▶ Initial goal was to provide an innovative framework; quantity in terms of algorithms

can always be improved later

▶ Algorithms where offload is not implemented will work, but run on the host.
▶ Header interception and additional compiler logic enabled using --acpp-stdpar

¹https://github.com/AdaptiveCpp/AdaptiveCpp/blob/develop/doc/stdpar.md
8 / 32



Memory management

▶ C++ has a flat memory hierarchy, and is unaware of multiple distinct memory
spaces (e.g host vs device memory)

▶ → Memory needs to be available on device without the user calling special
memory allocation functions or explicit data transfers

▶ Compiler/runtime in general cannot determine all allocations that might be used
on device, e.g.
▶ indirect access: Additional pointers are loaded from memory, e.g. in pointer-based

data structures (linked lists, trees, …)
▶ Pointers to allocations might be disguised as integers

SYCL 2020 unified shared memory (USM) memory to the rescue?

9 / 32



▶ SYCL System USM: All host memory addresses are directly accessible on device.
▶ Might be available e.g. if host/device are tightly integrated, the device is the host

CPU, Linux HMM
▶ No further action is needed, stdpar memory management solved!
▶ But only rarely available in practice…

▶ SYCL Shared USM: Memory automatically migrates between host and device as
needed
▶ Typically implemented with hardware emitting page faults, and driver migrating

memory pages
▶ No explicit data transfers needed, but special memory allocation/deallocation

functions required: sycl::malloc_shared(), sycl::free()
▶ More widely available (AMD, Intel, NVIDIA)

For generality, an stdpar implementation cannot assume that system USM is available.
In the following, we assume shared USM.²

²For the system USM case, AdaptiveCpp supports --acpp-stdpar-system-usm which disables
the additional shared USM memory management handling

10 / 32



Supporting stdpar through shared USM requires a memory management
interposition layer:
▶ Intercept all allocations/deallocations (new, delete, malloc, free, realloc,…)

and reroute to shared USM
▶ This is how all stdpar implementations generally work
▶ Major limitation: Only works with heap allocations. What happens if a user passes

in a stack pointer?

AdaptiveCpp:
▶ Allocation handled by locally replacing function calls with compiler
▶ Deallocation handled by globally intercepting symbols → Can deallocate both

USM and regular memory everywhere

11 / 32



This is very tricky to get right!³

Challenges (examples)
▶ Stack overflows/infinite recursion

due to intercepted memory
management inside SYCL

▶ Negative performance impact on
submission latency

▶ ODR-resolved functions may
cause local interposition to not
trigger correctly

▶ Memory allocation/deallocation
requests when drivers are
unavailable (early during program
startup or late during shutdown)

AdaptiveCpp solutions (examples)
▶ Conditionally disable interposition

when recursing, or when runtime
is unavailable

▶ Semi-lock-free allocation tracking
data structure that can be used to
determine whether a pointer is
USM independently from the
SYCL runtime

▶ Disable allocation interposition
inside call graph of SYCL
headers/sycl:: functions

▶ Full call graph duplication for the
interposed and non-interposed
allocation cases, insertion of ABI
tags to distinguish symbols

³especially for multi-backend SYCL implementations 12 / 32



Execution model

▶ C++ does not provide any information on the target device in its API
▶ → All stdpar implementations are challenged when multiple devices need to be used
▶ AdaptiveCpp stdpar uses SYCL default device¹

▶ thread-local in-order SYCL queues

▶ C++ stdpar model requires waiting after every kernel launch
▶ AdaptiveCpp is the only stdpar implementation that can detect and elide

unnecessary synchronization (more later)
¹controllable with ACPP_VISIBILITY_MASK. Multiple devices can be used e.g. via MPI.

13 / 32



Correctness

Seamless integration into C++ requires that all C++ features allowed in par_unseq
algorithms work. This clashes with device code limitations, e.g. for SYCL:
▶ Kernel lambdas must capture by-value, not by reference
▶ Host pointers may not be dereferenced on device (unless system USM)
▶ function pointers, virtual functions not allowed
▶ exceptions not allowed
▶ non-trivial types may only be passed as SYCL kernel arguments if they adhere to

the SYCL device-copyable concept and specialize sycl::is_device_copyable
▶ builtin functions (e.g. math functions) need to be from sycl:: namespace, e.g.

std::sin() is not allowed

14 / 32



Two categories of solutions:

1. Add extensions to support these features on device

2. Detect whether unsupported functionality is used, and if so, don’t offload (might
require delayed/different compiler diagnostics)

No stdpar implementation currently solves all of these restrictions.
AdaptiveCpp stdpar attempts to address/mitigate the most common issues. →
AdaptiveCpp stdpar can handle cases other implementations cannot handle.

15 / 32



Correctness examples
▶ AdaptiveCpp supports std:: math builtins in device code

▶ New LLVM pass that remaps libc builtins to AdaptiveCpp builtins
▶ roc-stdpar only supports this partially (e.g. std::cbrt does not work)

▶ AdaptiveCpp supports capture-by-reference
▶ AdaptiveCpp validates all kernel pointer arguments

▶ If a host pointer is used, the algorithm is not offloaded.
▶ icpx does not compile kernels with capture-by-reference, nvc++ and roc-stdpar

crash if the pointer is a host pointer
▶ AdaptiveCpp supports non-trivial data structures

▶ icpx does not allow such types in kernels unless sycl::is_device_copyable is
specialized

▶ AdaptiveCpp supports memory ownership transfer to program components not
compiled with stdpar compiler
▶ this can happen easily, e.g. if std::shared_ptr is used both by the

stdpar-compiled program and external libraries
▶ roc-stdpar crashes in this case (only intercepts deallocation locally)

16 / 32



Optimizations

▶ Simpler execution model than SYCL; bypass some unneeded SYCL layers (e.g.
DAG construction)
▶ → Lower submission latency than SYCL

▶ USM allocation/free is more expensive than regular allocation/free
▶ → Introduce USM memory pool and serve allocations from pool using custom

allocator
▶ Automatic emission of queue::prefetch() calls for allocations used in kernels

▶ Emitting single data transfer may be more efficient than having separate data
transfers for each page fault

▶ Supported prefetch modes
▶ always - always prefetches
▶ never - prefetching is disabled
▶ first - (default) only prefetch the first time an allocation is used on device
▶ after-sync - only prefetch for the first operation after a barrier

17 / 32



Optimizations: Synchroniza-
tion elision

1 for(int i=0; i < num_iters; ++i) {
2 std::for_each(par_unseq , data.begin(), data.end(), ...);
3 std::transform(par_unseq , data.begin(), data.end(), data.begin() ,...);
4 }
5 access_results(data);

▶ stdpar algorithms in above could be executed asynchronously until results are
accessed

▶ Waiting after every stdpar call can be expensive!
▶ AdaptiveCpp detects such unnecessary barriers and elides them by delaying

synchronization for as long as possible in new LLVM pass
▶ Currently only works within one TU; calls to functions defined externally prevent

elision
▶ Move optimization to LTO pipeline?

▶ Does not work for algorithms that need to directly return a result (e.g.
transform_reduce)

18 / 32



Optimizations: Offloading
heuristic

▶ Offloading is not always beneficial (e.g. latency for small problems)
▶ → Introduce offloading heuristic

▶ At runtime, record the execution chain of operations to predict the next ones
▶ Predicts offloaded/non-offloaded runtime for the next N operations

▶ Maintain database with previous kernel runtimes
▶ Both for offloaded and non-offloaded case – needs host run to calibrate performance

▶ Estimates data transfer cost using allocations passed as kernel arguments

Note: This heuristic worked well for our use cases, but we do not claim that it is
perfect!

19 / 32



Optimizations: Comparison

Optimization AdaptiveCpp icpx nvc++ roc-stdpar
Memory pool Yes ? Yes Yes
Synchronization elision Yes No No No
Automatic prefetch Yes No No No
Offloading heuristic Yes No (?) No No

20 / 32



Evaluation

21 / 32



Setup

Test hardware:
▶ System 1: 2x AMD Epyc 7713 (Isambard P3)
▶ System 2: AMD Epyc 7543P, 4x AMD Instinct MI100 (Isambard P3)
▶ System 3: AMD Epyc 7543P, 4x NVIDIA A100 (Isambard P3)
▶ System 4: 2x Intel Xeon Platinum 8480+, 4x Intel Data Center GPU Max 1550

(IDC)

Software:
▶ AdaptiveCpp f2c2960 built against LLVM 15/libstdc++ 12, using generic

single-pass compiler
▶ oneAPI 2024.0.2
▶ CUDA 12.1, NVHPC 23.5
▶ ROCm 5.4.1, roc-stdpar 8c57cd0

22 / 32



AMD GPUs and XNACK

▶ AMD GPUs depend on hardware feature called XNACK for shared USM
▶ Important for instruction retry in case of page fault
▶ Without XNACK, ROCm maps shared USM to device-accessible host-memory

▶ Every memory access needs to traverse PCIe…
▶ XNACK is elusive:

▶ Most consumer GPUs lack hardware support
▶ Not enabled on most HPC systems
▶ Needs non-standard Linux kernel arguments (cannot be enabled by unprivileged

users)

▶ We are lucky, our system supports XNACK
▶ In practice, most systems currently do not → non-XNACK performance is more

important than XNACK performance!

23 / 32



Babelstream

BabelStream¹ supports the stdpar model – useful to investigate the impact of the
stdpar shared USM interposition layer!
▶ Compare to SYCL version of the code with explicit device allocations
▶ XNACK results failed to validate – only non-XNACK results are shown on AMD
▶ the icpx -fsycl-pstl-offload-compiled BabelStream crashed inside internal

SYCL header code.
▶ As a workaround, we present results with direct calls to oneDPL and explicit

sycl::malloc_shared() calls. This is a simpler problem for drivers and not
exactly the same!

¹ Tom Deakin et al. (2016): GPU-STREAM v2.0: Benchmarking the Achievable Memory Bandwidth of Many-Core Processors Across Diverse Parallel
Programming Models.

24 / 32



Babelstream

Figure: BabelStream perf as a fraction of theoretical peak for
AdaptiveCpp and vendor compilers

▶ …outperforms
SYCL on CPU
(lower overhead)

▶ roc-stdpar is not
competitive
without XNACK

▶ acpp does not
need XNACK for
perf!
(auto-prefetch!)

▶ stdpar shared
USM can be
very efficient!

25 / 32



Mini-apps

▶ miniBUDE¹: Compute-bound molecular docking mini-app
▶ CloverLeaf²: 2D Hydrodynamics mini-app
▶ TeaLeaf³: Heat equation solver

Investigate how stdpar compilers perform compare to native vendor model:
▶ nvcc-compiled CUDA on NVIDIA;
▶ hipcc-compiled HIP on AMD;
▶ icpx-compiled SYCL on Intel

All AdaptiveCpp prefetch modes were tested; the best were always either first or
never.

¹Poenaru et al. (2021): A Performance Analysis of Modern Parallel Programming Models Using a Compute-Bound Application.

²Lin et al. (2022): Evaluating ISO C++ Parallel Algorithms on Heterogeneous HPC Systems.

³McIntosh-Smith et al. (2017): TeaLeaf: A Mini-Application to Enable Design-Space Explorations for Iterative Sparse Linear Solvers.
26 / 32



Figure: Stdpar performance normalized to native model. Fastest results are highlighted.

▶ AdaptiveCpp outperforms vendor stdpar models for 2/3 apps on all systems
▶ …Sometimes by an order of magnitude
▶ AdaptiveCpp delivers reliable performance, always faster than host PSTL
▶ icpx stdpar is not competitive except for compute-bound miniBUDE → issue in

memory interposition layer?
27 / 32



LULESH¹

▶ Shock hydrodynamics mini-app
▶ Very challenging for stdpar:

▶ Frequent allocations and deallocations
▶ Lots of indirect access
▶ Latency-sensitive → sensitive to synchronous stdpar operations

¹Karlin et al. (2013): LULESH 2.0 Updates and Changes
28 / 32



Figure: LULESH on A100 (pm: prefetch mode, se:
synchronization elision, mp: memory pool)

▶ Memory pool is an
important base
optimization!

▶ Synchronization
elision allows
AdaptiveCpp to
outperform nvc++
by up to 80%. (≈
80% of barriers
elided)

▶ Prefetching is
detrimental for this
app

29 / 32



Figure: LULESH on Instinct MI100

▶ ROCm stack severely challenged
▶ Crash if prefetches are used
▶ XNACK performance even worse
▶ AdaptiveCpp detects the issue and decides to not offload

▶ Offloading heuristic is important!
30 / 32



What about LULESH on Intel?
▶ ICPX refuses to compile LULESH (capture-by-reference)
▶ AdaptiveCpp compiles, but hangs inside Intel driver. Potential driver issue?

▶ Verified to run fine on Intel UHD 620 and 630 iGPU
▶ (Results are not exciting there; slower than host PSTL so offloading heuristic decides

to not offload)

31 / 32



Conclusion

▶ Integration of heterogeneous computing directly into C++ is possible
▶ Requires deep compiler and runtime integration for best results
▶ AdaptiveCpp is the first stdpar implementation to attempt this

▶ synchronization elision, automatic prefetch, direct calls to lower-level runtime
functionality…

▶ Outperforms vendor stdpar solutions for majority of mini-apps on all platforms,
and nvc++ by 80% on A100 with LULESH

▶ Unlike roc-stdpar, performs well without XNACK (the expected case!)
▶ None of the perf weaknesses that roc-stdpar and icpx exhibited
▶ Additional compiler improvements after paper submission. Expect 10-20%

faster kernels with AdaptiveCpp 24.02…
This project has received funding from the European Union’s HE research and innovation programme under grant agreement No 101092877 (SYCLops
project). This work used the Isambard UK National Tier-2 HPC Service (http://gw4.ac.uk/isambard/) operated by GW4 and the UK Met Office, and
funded by EPSRC (EP/ P020224/1). We gratefully acknowledge resources provided by Intel on the Intel Developer Cloud. 32 / 32

http://gw4.ac.uk/isambard/

