
OpenCL Command-buffer Extension: 
Design & Implementation

Ew n Crawford and J    ck Frankland

IWOCL – 2022



© 2022 Codeplay Software Ltd.3

Enabling AI & HPC 
to be Open, Safe & 

Accessible to All
Markets

High Performance Compute (HPC)
Automotive ADAS, IoT, Cloud Compute

Smartphones & Tablets
Medical & Industrial

Technologies: Artificial Intelligence
Vision Processing

Machine Learning
Big Data Compute

Company

Leaders in enabling high-performance 
software solutions for new AI processing 
systems

Enabling the toughest processors with tools 
and middleware based on open standards

Established 2002 in Scotland with ~80 
employees

Products

Integrates all the industry 
standard technologies needed 
to support a very wide range 
of AI and HPC

The heart of Codeplay's 
compute technology enabling 
OpenCL™, SPIR-V™, HSA™ and 
Vulkan™

C++ platform via the SYCL™
open standard, enabling vision 
& machine learning e.g. 
TensorFlow™

And many more!

Partners



© 2022 Codeplay Software Ltd.4

Background

Command-buffer Extension

Design Decisions

Implementation Experience

Next Steps

Agenda



© 2022 Codeplay Software Ltd.5

Background



© 2022 Codeplay Software Ltd.6

• OpenCL allows a programmer to offload a sequence of 
commands to a heterogeneous accelerator.

• The overhead of building a command sequence can be 
expensive for some hardware, e.g. embedded devices.

• When the same pipeline of commands are repeatedly 
enqueued this cost is incurred each iteration.

Command List Construction



© 2022 Codeplay Software Ltd.7

• Waiting on the host to construct workload commands also 
introduces latency until workload can be issued for execution.

• Removing this resubmission latency would keep devices better 
occupied with work.

• Impacts performance in applications where the same command 
sequence is used to process different inputs, e.g. computer vision 
applications operating on images.

Pipelined Workflows



© 2022 Codeplay Software Ltd.8

clEnqueue<Command> both creates a command and schedules 
it for execution.

OpenCL API

Problem

Separate these concerns – Distinct API controlling command 
construction and scheduling commands for execution. 

1. Command Construction - Only pay construction cost once.
2. Pipelined Workflow – Low overhead command submit 

entry-point.

Solution



© 2022 Codeplay Software Ltd.9

Proven Abstraction

Vulkan -
vkCommandBuffer

Intel Level Zero –
Command Lists

CUDA – CUDA 
Graphs



© 2022 Codeplay Software Ltd.10

cl_mem frame_input, frame_output, tile_input, tile_output;

// Setup buffers, build program, set tile input/output as kernel args

for (size_t f = 0; f < num_frames; f++) {

clEnqueueWriteBuffer(command_queue, frame_input, CL_TRUE, ...); 

for (size_t t = 0; t < num_tiles; t++) {

clEnqueueCopyBuffer(command_queue, frame_input, tile_input,

frame_offset, 0, ...);

clEnqueueNDRangeKernel(command_queue, kernel, ...);

clEnqueueCopyBuffer(command_queue, tile_output, frame_output,

0, frame_offset ...);

}

clEnqueueReadBuffer(command_queue, frame_output, CL_TRUE, ...);

}

Motivating Example

Code snippet from an 
application doing image 
processing with tiled 
memory.

Repeated sequence of 
commands - we want to avoid 
having to duplicate creating 
these commands each 
iteration.



© 2022 Codeplay Software Ltd.11

Command-buffer Extension



© 2022 Codeplay Software Ltd.12

• cl_khr_command_buffer extension 
defines an alternative API mechanism 
that separates command construction 
from execution.

• Created from contributions by many 
OpenCL working group members.

cl_khr_command_buffer

https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_Ext.html#cl_khr_command_buffer



© 2022 Codeplay Software Ltd.13

• Create command-buffer targeting a device.

• Record commands to command-buffer using new entry-
points.

• Finalize command-buffer, at which point no more commands 
can be recorded.

• Submit command-buffer one or more times asynchronously.

Command-buffer Lifecycle

Device queries available to report usage specifics. 



© 2022 Codeplay Software Ltd.14

cl_mem frame_input, frame_output, tile_input, tile_output;

// Setup buffers, build program, set tile input/output as kernel args

cl_command_buffer_khr command_buffer =

clCreateCommandBufferKHR(1, &command_queue, nullptr, nullptr);

for (size_t t = 0; t < num_tiles; t++) {

clCommandCopyBufferKHR(command_buffer, nullptr, frame_input,

tile_input, frame_offset, 0, ...);

clCommandNDRangeKernelKHR(command_buffer, nullptr, nullptr, kernel, ...);

clCommandCopyBufferKHR(command_buffer, nullptr, tile_output,

frame_output, 0, frame_offset, ...);

}

clFinalizeCommandBufferKHR(command_buffer);

for (size_t f = 0; f < num_frames; f++) {

clEnqueueWriteBuffer(command_queue, frame_input, CL_TRUE,...); 

clEnqueueCommandBufferKHR(0, nullptr, command_buffer, 0, nullptr,

nullptr);

clEnqueueReadBuffer(command_queue, frame_output, CL_TRUE, ...);

}

Command-buffer Example

Record commands

End recording of commands

Execute commands for each frame

Create the command-buffer



© 2022 Codeplay Software Ltd.15

cl_mem frame_input, frame_output, tile_input, tile_output;

// Setup buffers, build program, set tile input/output as kernel args

cl_command_buffer_khr command_buffer =

clCreateCommandBufferKHR(1, &command_queue, nullptr, nullptr);

for (size_t t = 0; t < num_tiles; t++) {

clCommandCopyBufferKHR(command_buffer, nullptr, frame_input,

tile_input, frame_offset, 0, ...);

clCommandNDRangeKernelKHR(command_buffer, nullptr, nullptr, kernel, ...);

clCommandCopyBufferKHR(command_buffer, nullptr, tile_output,

frame_output, 0, frame_offset, ...);

}

clFinalizeCommandBufferKHR(command_buffer);

for (size_t f = 0; f < num_frames; f++) {

clEnqueueWriteBuffer(command_queue, frame_input, CL_TRUE,...); 

clEnqueueCommandBufferKHR(0, nullptr, command_buffer, 0, nullptr,

nullptr);

clEnqueueReadBuffer(command_queue, frame_output, CL_TRUE, ...);

}

Command-buffer Example

Create the command-buffer



© 2022 Codeplay Software Ltd.16

cl_mem frame_input, frame_output, tile_input, tile_output;

// Setup buffers, build program, set tile input/output as kernel args

cl_command_buffer_khr command_buffer =

clCreateCommandBufferKHR(1, &command_queue, nullptr, nullptr);

for (size_t t = 0; t < num_tiles; t++) {

clCommandCopyBufferKHR(command_buffer, nullptr, frame_input,

tile_input, frame_offset, 0, ...);

clCommandNDRangeKernelKHR(command_buffer, nullptr, nullptr, kernel, ...);

clCommandCopyBufferKHR(command_buffer, nullptr, tile_output,

frame_output, 0, frame_offset, ...);

}

clFinalizeCommandBufferKHR(command_buffer);

for (size_t f = 0; f < num_frames; f++) {

clEnqueueWriteBuffer(command_queue, frame_input, CL_TRUE,...); 

clEnqueueCommandBufferKHR(0, nullptr, command_buffer, 0, nullptr,

nullptr);

clEnqueueReadBuffer(command_queue, frame_output, CL_TRUE, ...);

}

Command-buffer Example

Only a single queue permitted for the moment

Create the command-buffer



© 2022 Codeplay Software Ltd.17

cl_mem frame_input, frame_output, tile_input, tile_output;

// Setup buffers, build program, set tile input/output as kernel args

cl_command_buffer_khr command_buffer =

clCreateCommandBufferKHR(1, &command_queue, nullptr, nullptr);

for (size_t t = 0; t < num_tiles; t++) {

clCommandCopyBufferKHR(command_buffer, nullptr, frame_input,

tile_input, frame_offset, 0, ...);

clCommandNDRangeKernelKHR(command_buffer, nullptr, nullptr, kernel, ...);

clCommandCopyBufferKHR(command_buffer, nullptr, tile_output,

frame_output, 0, frame_offset, ...);

}

clFinalizeCommandBufferKHR(command_buffer);

for (size_t f = 0; f < num_frames; f++) {

clEnqueueWriteBuffer(command_queue, frame_input, CL_TRUE,...); 

clEnqueueCommandBufferKHR(0, nullptr, command_buffer, 0, nullptr,

nullptr);

clEnqueueReadBuffer(command_queue, frame_output, CL_TRUE, ...);

}

Command-buffer Example

Record commands



© 2022 Codeplay Software Ltd.18

cl_mem frame_input, frame_output, tile_input, tile_output;

// Setup buffers, build program, set tile input/output as kernel args

cl_command_buffer_khr command_buffer =

clCreateCommandBufferKHR(1, &command_queue, nullptr, nullptr);

for (size_t t = 0; t < num_tiles; t++) {

clCommandCopyBufferKHR(command_buffer, nullptr, frame_input,

tile_input, frame_offset, 0, ...);

clCommandNDRangeKernelKHR(command_buffer, nullptr, nullptr, kernel, ...);

clCommandCopyBufferKHR(command_buffer, nullptr, tile_output,

frame_output, 0, frame_offset, ...);

}

clFinalizeCommandBufferKHR(command_buffer);

for (size_t f = 0; f < num_frames; f++) {

clEnqueueWriteBuffer(command_queue, frame_input, CL_TRUE,...); 

clEnqueueCommandBufferKHR(0, nullptr, command_buffer, 0, nullptr,

nullptr);

clEnqueueReadBuffer(command_queue, frame_output, CL_TRUE, ...);

}

Command-buffer Example

Record commands

• Properties parameter for use in later extensions.
• mutable_handle for future functionality to 

change kernel command configuration.
• Newly defined sync-points rather than events.



© 2022 Codeplay Software Ltd.19

cl_mem frame_input, frame_output, tile_input, tile_output;

// Setup buffers, build program, set tile input/output as kernel args

cl_command_buffer_khr command_buffer =

clCreateCommandBufferKHR(1, &command_queue, nullptr, nullptr);

for (size_t t = 0; t < num_tiles; t++) {

clCommandCopyBufferKHR(command_buffer, nullptr, frame_input,

tile_input, frame_offset, 0, ...);

clCommandNDRangeKernelKHR(command_buffer, nullptr, nullptr, kernel, ...);

clCommandCopyBufferKHR(command_buffer, nullptr, tile_output,

frame_output, 0, frame_offset, ...);

}

clFinalizeCommandBufferKHR(command_buffer);

for (size_t f = 0; f < num_frames; f++) {

clEnqueueWriteBuffer(command_queue, frame_input, CL_TRUE,...); 

clEnqueueCommandBufferKHR(0, nullptr, command_buffer, 0, nullptr,

nullptr);

clEnqueueReadBuffer(command_queue, frame_output, CL_TRUE, ...);

}

Command-buffer Example

End recording of commands



© 2022 Codeplay Software Ltd.20

cl_mem frame_input, frame_output, tile_input, tile_output;

// Setup buffers, build program, set tile input/output as kernel args

cl_command_buffer_khr command_buffer =

clCreateCommandBufferKHR(1, &command_queue, nullptr, nullptr);

for (size_t t = 0; t < num_tiles; t++) {

clCommandCopyBufferKHR(command_buffer, nullptr, frame_input,

tile_input, frame_offset, 0, ...);

clCommandNDRangeKernelKHR(command_buffer, nullptr, nullptr, kernel, ...);

clCommandCopyBufferKHR(command_buffer, nullptr, tile_output,

frame_output, 0, frame_offset, ...);

}

clFinalizeCommandBufferKHR(command_buffer);

for (size_t f = 0; f < num_frames; f++) {

clEnqueueWriteBuffer(command_queue, frame_input, CL_TRUE,...); 

clEnqueueCommandBufferKHR(0, nullptr, command_buffer, 0, nullptr,

nullptr);

clEnqueueReadBuffer(command_queue, frame_output, CL_TRUE, ...);

}

Command-buffer Example

End recording of commands

• Provides the runtime with optimization 
opportunities based on knowledge of 
command dependencies.

• Explicit entry-point gives users control of 
when to incur any synchronous latency.



© 2022 Codeplay Software Ltd.21

cl_mem frame_input, frame_output, tile_input, tile_output;

// Setup buffers, build program, set tile input/output as kernel args

cl_command_buffer_khr command_buffer =

clCreateCommandBufferKHR(1, &command_queue, nullptr, nullptr);

for (size_t t = 0; t < num_tiles; t++) {

clCommandCopyBufferKHR(command_buffer, nullptr, frame_input,

tile_input, frame_offset, 0, ...);

clCommandNDRangeKernelKHR(command_buffer, nullptr, nullptr, kernel, ...);

clCommandCopyBufferKHR(command_buffer, nullptr, tile_output,

frame_output, 0, frame_offset, ...);

}

clFinalizeCommandBufferKHR(command_buffer);

for (size_t f = 0; f < num_frames; f++) {

clEnqueueWriteBuffer(command_queue, frame_input, CL_TRUE,...); 

clEnqueueCommandBufferKHR(0, nullptr, command_buffer, 0, nullptr,

nullptr);

clEnqueueReadBuffer(command_queue, frame_output, CL_TRUE, ...);

}

Command-buffer Example

Execute commands for each frame



© 2022 Codeplay Software Ltd.22

cl_mem frame_input, frame_output, tile_input, tile_output;

// Setup buffers, build program, set tile input/output as kernel args

cl_command_buffer_khr command_buffer =

clCreateCommandBufferKHR(1, &command_queue, nullptr, nullptr);

for (size_t t = 0; t < num_tiles; t++) {

clCommandCopyBufferKHR(command_buffer, nullptr, frame_input,

tile_input, frame_offset, 0, ...);

clCommandNDRangeKernelKHR(command_buffer, nullptr, nullptr, kernel, ...);

clCommandCopyBufferKHR(command_buffer, nullptr, tile_output,

frame_output, 0, frame_offset, ...);

}

clFinalizeCommandBufferKHR(command_buffer);

for (size_t f = 0; f < num_frames; f++) {

clEnqueueWriteBuffer(command_queue, frame_input, CL_TRUE,...); 

clEnqueueCommandBufferKHR(0, nullptr, command_buffer, 0, nullptr,

nullptr);

clEnqueueReadBuffer(command_queue, frame_output, CL_TRUE, ...);

}

Command-buffer Example

Execute commands for each frame

Queue must be compatible with queue used 
to create command-buffer, i.e same device and 
properties.



© 2022 Codeplay Software Ltd.23

Design Decisions



© 2022 Codeplay Software Ltd.24

API Design Alternative

cl_command_buffer_khr command_buffer;
clBeginQueueRecording(command_queue, command_buffer);

for (size_t t = 0; t < num_tiles; t++) {

clEnqueueCopyBuffer(command_queue, frame_input, tile_input,

frame_offset, 0, ...);

clEnqueueNDRangeKernel(command_queue, kernel, ...);

clEnqueueCopyBuffer(command_queue, tile_output, frame_output,

0, frame_offset ...);

}

clEndQueueRecording(command_queue, command_buffer);

for (size_t f = 0; f < num_frames; f++) {

clEnqueueWriteBuffer(command_queue, frame_input, CL_TRUE,...); 

clEnqueueCommandBufferKHR(0, nullptr, command_buffer,
0, nullptr, nullptr);

clEnqueueReadBuffer(command_queue, frame_output,
CL_TRUE, ...);

}

Alternative that uses existing command-queue 
entry-points for recording

Introduces state to command-queue – where 
queue can be put into a “recording” state

Advantage: Easier for users to update existing 
applications to use extension



© 2022 Codeplay Software Ltd.25

Implications of Stateful Design

Maintainability

• If a new command is added to core OpenCL spec it can be immediately used by extension if desired.
• However, if we don’t want to allow the new command then still need to update extension spec with 

error wording forbidding it. 

• Reverse of the maintenance situation of current design, new commands we’d like to introduce would 
need added (possibly as a layered extension) but free to ignore new commands not introduced.

User Readability

• Smaller API footprint & less duplication of entry-points, so easier to use in existing applications.
• However, may be harder for users to reason about code as they have to keep mental note of

command-queue state



© 2022 Codeplay Software Ltd.26

New Entry-points

• Haven’t allowed commands inside a command-buffer to interaction with host
• No read/write/map buffer commands 
• No cl_event which allows host callbacks and host synchronization
• Introduce cl_sync_point_khr for synchronization within command-buffer only

Constrain Scope

Control 

• Able to add extra parameters to new command recording entry-points
• Properties parameter to kernel commands
• Mutable handle parameter to allow every command in a command-buffer to be referenced

with a handle, rather than having to get an application writer to remember indices



© 2022 Codeplay Software Ltd.27

• Vulkan distinguishes between primary and secondary command-buffers
• Primary command-buffers are submitted to queues.

• Secondary command-buffers can only be executed from another command-
buffer.

• OpenCL command-buffers are all primary command-buffers.

• vkResetCommandBuffer
• Resets a command-buffer to initial state to avoid the overhead of frequent 

creation and destruction

• No equivalent in OpenCL extension – could be added later if cost of 
creation/destruction is found to be prohibitive to performance.

Vulkan Comparison



© 2022 Codeplay Software Ltd.28

Vulkan Comparison
VkCommandBufferUsageFlagBits Semantics In OpenCL command-buffers

VK_COMMAND_BUFFER_USAGE
_ONE_TIME_SUBMIT_BIT

Indicates that the command-buffer 
may only be submitted once 

Not represented

VK_COMMAND_BUFFER_USAGE
_RENDER_PASS_CONTINUE_BIT

Only relevant for render passes and 
secondary command-buffers

Not represented

VK_COMMAND_BUFFER_USAGE
_SIMULTANEOUS_USE_BIT

Indicates that the command-buffer 
can submitted while a current 
submission is in flight

Available
• Optionally supported by devices
• Set on command-buffer 

creation as a property
• Discussion ComputeAorta 

implementation in later slides.



© 2022 Codeplay Software Ltd.29

• Command-buffer extension unlocks possibility of extending functionality in different 
directions.

• Rather than combine functionality into a single extension with lots of optional 
capabilities, decided to layer the extension functionality across multiple extensions 
with cl_khr_command_buffer as the base.
• Quicker release of base extension, allowing for earlier feedback from community & implementors
• Simpler base extension reduces effort to implement minimum functionality.
• Standalone extension documentation is more readable.

• Layered extensions being developed and with target provisional release in 
2022.

Layering



© 2022 Codeplay Software Ltd.30

Layering

Mutable Kernel Commands

Multi-device command-buffer

• Kernel commands in a command-buffer may be modified between command-buffer 
enqueues. 

• Being able to modify commands is the rationale behind the unused mutable-handle 
output parameter specified in command recording entry-points.

• Individual commands in a command-buffer can be recorded to queues targeting 
different devices

• Rationale behind unused queue parameter in command recording entry-points.



© 2022 Codeplay Software Ltd.31

Implementation Experience



© 2022 Codeplay Software Ltd.32

• Codeplay's toolkit for building heterogeneous compute 
runtimes

• Amongst other components consists of an OpenCL 
implementation built on top of Codeplay's proprietary 
ComputeMux API

• For more details on ComputeAorta see 2020 IWOCL talk

ComputeAorta



© 2022 Codeplay Software Ltd.33

• ComputeMux is Codeplay's bare metal compute API

• ComputeMux already has concept of 
mux_command_buffer_s object

• Commands within mux_command_buffer_s execute in-order

ComputeMux



© 2022 Codeplay Software Ltd.34

mux_command_buffer_s

ComputeMux

muxCommandReadBuffer
muxCommandCopyBuffer
muxCommandWriteBuffer

muxCommandNDRange
…
…
...

OpenCL Command Buffers

clEnqueueReadBuffer
clEnqueueCopyBuffer
clEnqueueWriteBuffer

clEnqueueNDRangeKernel
…
…
...



© 2022 Codeplay Software Ltd.35

mux_command_buffer_s

ComputeMux

muxCommandCopyBuffer
muxCommandCopyBufferRegions
muxCommandCopyBufferToImage

muxCommandCopyImage
muxCommandCopyImageToBuffer

muxCommandFillBuffer
muxCommandFillImage
muxCommandNDRange

OpenCL Command Buffers

clCommandCopyBufferKHR
clCommandCopyBufferRectKHR
clCommandCopyBufferToImage

clCommandCopyImageKHR
clCommandCopyImageToBufferKHR

clCommandFillBufferKHR
clCommandFillImageKHR

clCommandNDRangeKernelKHR



© 2022 Codeplay Software Ltd.36

• mux_command_buffer_s already go some way to reducing 
overhead of building command streams in vanilla OpenCL

• As regular OpenCL commands are enqueued to a 
cl_command_queue they are "batched" into 
mux_command_buffer_s objects according to certain constraints 
- "pending dispatch"

• Command batches are then dispatched when a blocking event or 
flush occurs in OpenCL, avoiding the cost of building a command 
stream for every individual command

Command Batching



© 2022 Codeplay Software Ltd.37

Batching Algorithm

Push command to the associated 
command-buffer

Wait events associated with a 
single pending dispatch

Get an unused command-bufferWait events associated with 
multiple pending dispatches

Get an unused command-buffer
No wait events or wait events 
with no associated pending 

dispatches (already dispatched)



© 2022 Codeplay Software Ltd.38

• Creating mux_command_buffer_s objects

• Destroying mux_command_buffer_s objects

• May reset command buffers via muxResetCommandBuffer and put them 
in a cache to avoid wasted overhead of resource allocation/dealloation

• Creating/destroying/caching and signalling mux_semaphore_s objects 
used to express dependencies between mux_command_buffer_s objects

• Signalling and waiting on OpenCL cl_events

Batching Algorithm

cl_command_queue responsiblities



© 2022 Codeplay Software Ltd.39

Problem: Batching cl_command_buffer_khr

for (size_t t = 0; t < num_tiles; t++) {

clCommandCopyBufferKHR(…);

clCommandNDRangeKernelKHR(..);

clCommandCopyBufferKHR(…);

}

clFinalizeCommandBufferKHR(...);

...

Copy Buffer

ND Range

Copy Buffer

Copy Buffer

ND Range

Copy Buffer

num_tiles times



© 2022 Codeplay Software Ltd.40

Problem: Batching cl_command_buffer_khr

for (size_t f = 0; f < num_frames; f++) {

clEnqueueWriteBuffer(...);

clEnqueueCommandBufferKHR(...);

clEnqueueReadBuffer(...);

}

Pending Dispatches

• Batching command appends subsequent 
regular commands to command-buffer

• cl_command_queue will reset or destroy 
command-buffer once it has finished 
executing



© 2022 Codeplay Software Ltd.41

Problem: Batching cl_command_buffer_khr

for (size_t f = 0; f < num_frames; f++) {

clEnqueueWriteBuffer(...);

clEnqueueCommandBufferKHR(...);

clEnqueueReadBuffer(...);

}

Pending Dispatches

Write Buffer

• Batching command appends subsequent 
regular commands to command-buffer

• cl_command_queue will reset or destroy 
command-buffer once it has finished 
executing



© 2022 Codeplay Software Ltd.42

Problem: Batching cl_command_buffer_khr

for (size_t f = 0; f < num_frames; f++) {

clEnqueueWriteBuffer(...);

clEnqueueCommandBufferKHR(...);

clEnqueueReadBuffer(...);

}

Pending Dispatches

Write Buffer

Copy Buffer

ND Range

Copy Buffer

• Batching command appends subsequent 
regular commands to command-buffer

• cl_command_queue will reset or destroy 
command-buffer once it has finished 
executing



© 2022 Codeplay Software Ltd.43

Problem: Batching cl_command_buffer_khr

for (size_t f = 0; f < num_frames; f++) {

clEnqueueWriteBuffer(...);

clEnqueueCommandBufferKHR(...);

clEnqueueReadBuffer(...);

}

Pending Dispatches

Write Buffer

Copy Buffer

ND Range

Copy Buffer

Read Buffer

• Batching command appends subsequent 
regular commands to command-buffer

• cl_command_queue will reset or destroy 
command-buffer once it has finished 
executing



© 2022 Codeplay Software Ltd.44

Problem: Batching cl_command_buffer_khr

Pending Dispatches

Write Buffer

Copy Buffer

ND Range

Copy Buffer

Read Buffer

• Can't be appended to – will always cause 
subsequent regular commands to get a new 
mux_command_buffer_s

• Won't be reset or destroyed by 
cl_command_queue

• Will outlive the cl_command_queue

for (size_t f = 0; f < num_frames; f++) {

clEnqueueWriteBuffer(...);

clEnqueueCommandBufferKHR(...);

clEnqueueReadBuffer(...);

}

“User Command-Buffer”



© 2022 Codeplay Software Ltd.45

• mux_command_buffer_s don’t support simultaneous use

• Not possible to have more than one mux_command_buffer_s
in flight at a time before cl_khr_command_buffer use case

• Resources used by mux_command_buffer_s means 
enqueuing it more than once corrupts the queue

Problem: Simultaneous Use



© 2022 Codeplay Software Ltd.46

Problem: Simultaneous Use

Pending Dispatches

mux_command_buffer_s
A

mux_command_buffer_s
B

mux_command_buffer_s
A

A's 
resources

B's 
resources

clEnqueueCommandBufferKHR(A);

clEnqueueCommandBufferKHR(B);

clEnqueueCommandBufferKHR(A);

clFlush();



© 2022 Codeplay Software Ltd.47

• CL_COMMAND_BUFFER_CAPABILITY_SIMULTANEOUS_USE_
KHR introduced to make this optional so vendors can avoid 
situation altogether

• Introduced muxCloneCommandBuffer entry point
• Copies of a command buffer, returning an identical but independent 

mux_command_buffer_s.
• Allows user to create command buffers 

with CL_COMMAND_BUFFER_SIMULTANEOUS_USE_KHR
• If set will result in call to muxCloneCommandBuffer at enqueue time when 

pending count exceeds 1

Solution: Simultaneous Use



© 2022 Codeplay Software Ltd.48

Solution: Simultaneous Use

Pending Dispatches

mux_command_buffer_s
A

mux_command_buffer_s
B

mux_command_buffer_s
C

A's 
resources

B's 
resources

C's 
resources

muxCloneCommandBuffer(A) -> C

Note: command-
buffer C's 
destruction is 
queues 
responsibility. 



© 2022 Codeplay Software Ltd.49

• Kernel containing printf gets an implicit buffer added to it, 
printf writes into this buffer

• When kernel is enqueued an implicit callback is added to read 
the buffer and printf its content on host

• If implementation supports simultaneous-use, printf call may 
clobber one another

Problem: printf



© 2022 Codeplay Software Ltd.50

Problem: printf

Copy Buffer

ND Range printf kernel

Copy Buffer

metadata

data

Copy Buffer

ND Range printf kernel

Copy Buffer

printf BufferPending Dispatches



© 2022 Codeplay Software Ltd.51

• CL_COMMAND_BUFFER_CAPABILITY_KERNEL_PRINTF_KHR 
allows implementation to opt out of supporting printf in 
kernels in cl_command_buffer_khr objects

• ComputeAorta works around this by offsetting into buffer 
for each subsequent printf call

Solution: printf



© 2022 Codeplay Software Ltd.52

Problem: printf

Copy Buffer

ND Range printf kernel

Copy Buffer

metadata

data

Copy Buffer

ND Range printf kernel

Copy Buffer

Pending Dispatches printf Buffer



© 2022 Codeplay Software Ltd.53

•Khronos OpenCL Working Group
• Release layered extensions.
• Finally ratified extension rather than provisional.

•Codeplay
• Prototyping SYCL functionality on top of the OpenCL extension.
• Implement layered extensions.

Next Steps

Feedback on the extension greatly appreciated! 
https://github.com/KhronosGroup/OpenCL-Docs/issues



@codeplaysoft codeplay.cominfo@codeplay.com

Thank you for watching

ewan@codeplay.com        jack@codeplay.com 


