
Wavefront Parallel Processing on GPUs with an
Application to Video Encoding Algorithms
Biju George, Ben Ashbaugh

IWOCL 2017

Wavefront Parallel Processing (WPP)

2

• Efficient Parallel Processing technique for
problems characterized by specific patterns of
data dependencies across an n-dimension grid

• Patterns referred to as Wavefront Dependency
Patterns

45˚ wavefront traversal

26˚ wavefront traversal

• Key observations:

• Data dependencies satisfied by ordered traversals
along diagonals a.k.a wavefronts

• Independent computations in a wavefront

Applications Of WPP

3

• Scientific algorithms based on dynamic
programming – Smith-Waterman for
genome sequencing

• Large grids & less computation at grid points

• Modern video encoding algorithms – AVC
& HEVC

• Small grids & much computation at grid
points

• Image analysis – Morphological
Reconstruction

• Large grids & dynamic dependencies at grid
points

Smith-Waterman sequence alignment

Differential encoding of motion vectors
in video encoding

Video Encoding Algorithms

4

• Video encoding algorithms exploit temporal
(inter frame) and spatial (intra frame)
similarities across and within frames

• Modern video encoding algorithms employ
block based video motion estimation (VME)
to do this

• Dominant compute intensive component

• Critical to efficiently extract parallelism for
performance

• Exhibits 26˚ and 45˚ wavefront patterns for
“Predicted Motion Vector” (PMV) and “Most
Probable Mode” (MPM)

Inter and Intra frame motion estimation

[4]

Intel® Graphics 530 GPU Architecture

5

Programmable VME Engine
• Optimized for memory bandwidth
• Provides configurable raw compute

• Smarts in the hands of the
programmer

1 1 1

Global Thread

Dispatcher

Powerful Video Motion Estimation (VME)
Engine in Sampler

1

Sub-slice
• SLM shared by sub-slice EU threads
• Barrier synchronization in sub-slice
• One VME engine

OpenCL SW Interface

• Device-side VME vendor extension - exposes programmable VME
functionality in GPU

• Set of built-in functions callable from user written OpenCL kernels
– maps closely with exposed HW interface

• Essentially provides a very low-level motion estimation library with a underlying
HW implementation – think of it as Inter Performance Primitives (IPP).

• Subgroups functions for block API

Intel® Confidential. * Other names and brands can be claimed as a property of other entities.

Challenges with WPP on GPUs with OpenCL

7

• Challenges with synchronization between WGs

• GPU schedulers not particularly designed to handle dependencies across work-groups
(WGs)

• OpenCL spec allows launch order of WGs to be implementation specific

• Non-preemptable nature of WGs

• Challenges with expanding and contracting parallelism

• Not having enough compute to saturate machine

• Idle polling

Plot of parallelism as wavefront progresses

Intel Technology

IMPLEMENTED SOLUTIONS

8

Implemented Solutions

9

• Four WPP OpenCL solutions implemented
and evaluated on Intel® Processor
Graphics (Intel® Graphics 530)

• Same basic encode kernel structure

• Uses custom global memory barriers

• No data dependencies for pre and post-
processing stages

• Per Amdahl’s law the Motion Estimation
stage is the performance critical part

• Pre and post-processing part move work
out of the performance critical part

• Up to 9 forward reference frames searched
per MB.

• VME operations leveraged through Intel
OpenCL device-side VME extensions

• Major considerations

• Maximally utilize achievable
parallelism

• Efficient synchronization

Persistent Threads with Distributed Wavefront Sweep

10

• Subgroups active for entire
kernel duration – w/a launch
order issues

• One work-group runs on a
compute unit

• Maximal launch of subgroups

• Work-queues process ordered
wavefronts

• Subgroups with work-group
sync efficiently using barriers

• Inter work-group sync using
global memory counter

• Efficient sync

45˚ wavefront data distribution

Persistent Threads with Distributed Wavefront Sweep

11

• OpenCL 2.0 memory model atomics
needed to guarantee correctness

• Polls with acquire semantics

• Signal with acquire-release semantics

• Writes from subgroups signaling a
counter update need to be visible in
subgroups polling for the same
counter update

• Major drawback is inability to extract
partial parallelism across
wavefronts.

void poll(__global atomic_int* counter, int threshold) {

 int entry = threshold - 1;

 // Only one representative work-item from representative subgroup

 // needs to poll.

 if (get_sub_group_local_id()==0&& get_sub_group_id() == 0) {

 while (entry != threshold) {

 entry = atomic_load_explicit(

 counter, memory_order_acquire, memory_scope_device);

 }

 }

 work_group_barrier(CLK_LOCAL_MEM_FENCE);

}

void signal(__global atomic_int* counter) {

 // Only one representative work-item from representative subgroup

 // needs to signal.

 if (get_sub_group_local_id() == 0) {

 atomic_fetch_add_explicit(

 counter, 1, memory_order_acq_rel, memory_scope_device);

 }

}

Synchronization functions

Persistent Threads with Cyclic Computation

12

• Data partitioned into unit intervals along
an axis and assigned to persistent
threads in round-robin

• Only works if no forward dependency
across intervals

• For 45˚ wavefront, cyclic distribution
along x or y axis

• For 26˚ wavefront, cyclic distribution
only along y because of top-right
dependency

• Persistent threads - one subgroup per
WG

45˚ wavefront data distribution

WG0 WG1 WG2 WG3 WG0 WG1 WG2

1-step

intervals

26˚ wavefront data distribution

WG0

WG1

WG2

WG3

WG0

WG1

2-step

intervals

Persistent Threads with Cyclic Computation

13

• Subgroups process intervals

• Synch using global memory counters –
one per WG

• Similar pair of sync functions

• Enables overlapped partial execution
of multiple wavefronts

• Drawback is not having enough
threads to saturate GPU for lower
resolutions

Cyclic computation of wavefronts

int2 mbid = { get_group_id(0), 0 };

do {

 int2 imgsize = get_image_dim(srcimg);

 int2 framembsize = (imgsize + (int2)(15, 15)) / 16;

 preprocess(…);

 if (mbid.x > 0) {

 poll(scoreboard + mbid.x - 1, mbid.y + 1);

 }

 if (!skip_block) {

 block_motion_estimate_process(...);

 }

 signal(scoreboard + mbid.x);

 postprocess(…); mbid.y += 1;

 // Cycle computation in interval

 if (mbid.y == framembsize.y) {

 mbid.y = 0; mbid.x += get_num_groups(0);

 }

 } while (mbid.x < framembsize.x);

Poll neighbor interval counter

Signal current interval counter

Distributed Computation of Wavefronts

14

• Similar to cyclic computation approach

• Proposed extension for OpenCL runtime
to fill GPU deterministically using pre-
defined pattern

• reqd_launch_pattern(pattern)

• ‘native’ or ‘raster’, or ‘custom’ patterns

• Eliminates cycling step

• Enables WG-level pre-emption if in an
environment with context switch latency
requirements

26˚ wavefront data distribution

45˚ wavefront data distribution

WG0 WG1 WG2 WG3 WG4 WG5 WG6

WG0

WG1

WG2

WG3

WG4

WG5

1-step

wavefronts

2-step

wavefronts

Persistent Threads with Cyclic Computation of Multiple
Independent Wavefronts

15

• Enhancement of basic cyclic computation to
address key drawbacks

• Unable to saturate GPU for smaller frames

• Lesser parallelism during wavefront
expansion/contraction phases

• Process multiple independent wavefronts

• from independent encode streams, or

• from independent slices within same stream

• we chose 3 wavefronts from different streams

Plot of parallelism as single wavefront progresses

Plot of parallelism with multiple wavefronts

Persistent Threads with Cyclic Computation of Multiple
Independent Wavefronts

16

• Scaled version of basic cyclic
approach

• One persistent WG processing
intervals from one set of independent
wavefronts

• Three WGs

• Maximal launch of subgroups in WGs

• Difference global counters across
WGs for sync

• Other benefits

• Better L1/L2 sampler cache locality

Cyclic computation of multiple independent wavefronts

int2 mbid = { 0, get_sub_group_id() };

int2 imgsize = get_image_dim(src0img);

int2 framembsize = (imgsize + (int2)(15, 15)) / 16;

do {

 preprocess(…);

 if (mbid.y > 0) {

 uint threshold = mbid.x + wavefront_step_size;

 threshold = (threshold>framembsize.x)? framembsize.x: threshold;

 poll(scoreboard + mbid.y - 1, threshold, mbid);

 }

 if (get_group_id(0) == 0) {

 if (!skip_block[0]) block_motion_estimate_process(..., src0img, ...)

 } else if (get_group_id(0) == 1) {

 if (!skip_block[1]) block_motion_estimate_process(..., src1img, ...)

 } else if (get_group_id(0) == 2) {

 if (!skip_block[2]) block_motion_estimate_process(..., src2img, ...)

 }

 signal(scoreboard + mbid.y);

 postprocess(…); mbid.x += 1;

 if (mbid.x == framembsize.x) {

 mbid.x = 0; mbid.y += get_num_sub_groups();

 }

} while (mbid.y < framembsize.y);

Poll wavefront neighbor thread counter

Signal wavefront current thread counter

Intel Technology

PERFORMANCE EVALUATIONS

17

Performance Evaluation – Experiment Setup

18

• Key performance metrics

• GPU execution time per frame

• Overall performance

• VME engine busyness

• Parallelism extracted

• Count of atomic operations

• Efficiency of sync

 • Test sequences

• 480p (858x480), 72-p (1280x720), 1080p (1920x1080), 4k (3840x2160)

• 15 planar YUV frames

• Force max workgroup size to be 896

Intel® Graphics 530 Architecture

1 1 1

Global

Thread

Dispatcher

Performance Evaluation – Key Observations

19

GPU execution times comparison

• Distributed wavefront sweep performed
poorly despite most efficient sync

• Low sampler utilization

• Extracting parallelism more important

• Cyclic & Distributed computation
solutions performed identically

• Multiple independent wavefront solution
performed best specially for lower
resolutions

• For 480p 21% over basic cyclic solution; sampler
utilization up to 96% from 65%

• For 4K no noticeable improvement over basic

GPU media samples busyness comparison

Performance Evaluation – Key Observations

20

GPU atomic operation comparison

• Distributed wavefront sweep performed
most efficient sync as expected

• Cyclic & Distributed computation
solutions had quite of but of idle polling
and bandwidth utilization

• Multiple independent wavefront solution
performed well

• Lesser threads per independent wavefront; but
enough to keep sampler busy

• Ergo lesser idle polling load per set of global sych
counters

Intel Technology

SUMMARY

21

Summary

22

• Background and Challenges with WPP on GPUs

• Evaluated 4 WPP solutions for video encoding on Intel® Processor
Graphics

• Cost of sync is not as significant when compared to the efficiency of extracting
parallelism

• Efficiency of sync improved by running just as many threads to keep the VME
engine busy

• Cyclic computation with multiple independent wavefronts solution performed
best overall particularly for 720p resolutions and below

• In cases where only one encode stream is available basic cyclic computation
solution is recommended unless multi-slice is an option

Acknowledgements

23

We would like to acknowledge the valuable inputs and advices of our
colleagues Jay Patel, Daniel Rhee, Raghukrishnan Embar, and Saimanohara
Alapati.

References

1. https://software.intel.com/sites/default/files/managed/43/c1/cl_in
tel_device_side_avc_motion_estimation.txt

2. https://software.intel.com/sites/default/files/managed/c6/f8/cl_int
el_device_side_avc_vme_programmers_manual.pdf

3. Junkins, Stephen. 2015. The Compute Architecture of Intel®
Processor Graphics Gen9. Retrieved from:
https://software.intel.com/en-us/file/the-compute-architecture-of-
intel-processor-graphics-gen9-v1d0pdf

4. Image in slide 4 created with permission from video content in
https://www.youtube.com/user/Faraoni7Prod

24

https://software.intel.com/sites/default/files/managed/43/c1/cl_intel_device_side_avc_motion_estimation.txt
https://software.intel.com/sites/default/files/managed/43/c1/cl_intel_device_side_avc_motion_estimation.txt
https://software.intel.com/sites/default/files/managed/43/c1/cl_intel_device_side_avc_motion_estimation.txt
https://software.intel.com/sites/default/files/managed/c6/f8/cl_intel_device_side_avc_vme_programmers_manual.pdf
https://software.intel.com/sites/default/files/managed/c6/f8/cl_intel_device_side_avc_vme_programmers_manual.pdf
https://software.intel.com/sites/default/files/managed/c6/f8/cl_intel_device_side_avc_vme_programmers_manual.pdf
https://software.intel.com/sites/default/files/managed/c6/f8/cl_intel_device_side_avc_vme_programmers_manual.pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://software.intel.com/en-us/file/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0pdf
https://www.youtube.com/user/Faraoni7Prod
https://www.youtube.com/user/Faraoni7Prod
https://www.youtube.com/user/Faraoni7Prod

Legal Notice and Disclaimers

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration
will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more
complete information about performance and benchmark results, visit http://www.intel.com/performance.

Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others.

© 2017 Intel Corporation.

25

http://www.intel.com/performance

Legal Disclaimer and Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations
and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products.

Copyright © 2017, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks
of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel

microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the

availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations

in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets

covered by this notice.

Notice revision #20110804

26

