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Wavefront Parallel Processing (WPP) 
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• Efficient Parallel Processing technique for 
problems characterized by specific patterns of 
data dependencies across an n-dimension grid 

• Patterns referred to as Wavefront Dependency 
Patterns 

45˚ wavefront traversal 

26˚ wavefront traversal 

• Key observations: 

• Data dependencies satisfied by ordered traversals 
along diagonals a.k.a wavefronts  

• Independent computations in a wavefront 

 

 



Applications Of WPP 
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• Scientific algorithms based on dynamic 
programming – Smith-Waterman for 
genome sequencing 

• Large grids & less computation at grid points 

• Modern video encoding algorithms – AVC 
& HEVC 

• Small grids & much computation at grid 
points 

• Image analysis – Morphological 
Reconstruction 

• Large grids & dynamic dependencies at grid 
points 

 

 

 

 

Smith-Waterman sequence alignment 

Differential encoding of motion vectors 
in video encoding 



Video Encoding Algorithms 
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• Video encoding algorithms exploit temporal 
(inter frame) and spatial (intra frame) 
similarities across and within frames 

• Modern video encoding algorithms employ 
block based video motion estimation (VME) 
to do this 

• Dominant compute intensive component 

• Critical to efficiently extract parallelism for 
performance 

• Exhibits 26˚ and 45˚ wavefront patterns for 
“Predicted Motion Vector” (PMV) and “Most 
Probable Mode” (MPM) 

 

 

 

Inter and Intra frame motion estimation 

[4] 



Intel® Graphics 530 GPU Architecture 
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Programmable VME Engine 
• Optimized for memory bandwidth 
• Provides configurable raw compute 

• Smarts in the hands of the 
programmer 

1 1 1 

Global Thread 

Dispatcher 

Powerful Video Motion Estimation (VME) 
Engine in Sampler 
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Sub-slice 
• SLM shared by sub-slice EU threads 
• Barrier synchronization in sub-slice 
• One VME engine 



OpenCL SW Interface 

• Device-side VME vendor extension - exposes programmable VME 
functionality in GPU 

• Set of built-in functions callable from user written OpenCL kernels 
– maps closely with exposed HW interface 

• Essentially provides a very low-level motion estimation library with a underlying 
HW implementation – think of it as Inter Performance Primitives (IPP). 

• Subgroups functions for block API 

Intel® Confidential. * Other names and brands can be claimed as a property of other entities.   



Challenges with WPP on GPUs with OpenCL 
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•  Challenges with synchronization between WGs 

• GPU schedulers not particularly designed to handle dependencies across work-groups 
(WGs) 

• OpenCL spec allows launch order of WGs to be implementation specific 

• Non-preemptable nature of WGs 

 

 

 

• Challenges with expanding and contracting parallelism 

• Not having enough compute to saturate machine 

• Idle polling 

 

 

 

 

 

Plot of parallelism as wavefront progresses 
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IMPLEMENTED SOLUTIONS 
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Implemented Solutions 
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• Four WPP OpenCL solutions implemented 
and evaluated on Intel® Processor 
Graphics (Intel® Graphics 530) 

• Same basic encode kernel structure 

• Uses custom global memory barriers 

• No data dependencies for pre and post-
processing stages 

• Per Amdahl’s law the Motion Estimation 
stage is the performance critical part 

• Pre and post-processing part move work 
out of the performance critical part 

• Up to 9 forward reference frames searched 
per MB. 

• VME operations leveraged through Intel 
OpenCL device-side VME extensions 

• Major considerations 

• Maximally utilize achievable 
parallelism 

• Efficient synchronization 

 

 

 

 

 



Persistent Threads with Distributed Wavefront Sweep 
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• Subgroups active for entire 
kernel duration – w/a launch 
order issues 

• One work-group runs on a 
compute unit 

• Maximal launch of subgroups 

• Work-queues process ordered 
wavefronts 

• Subgroups with work-group 
sync efficiently using barriers 

• Inter work-group sync using 
global memory counter 

• Efficient sync 

 

45˚ wavefront data distribution 

 



Persistent Threads with Distributed Wavefront Sweep 

11 

• OpenCL 2.0  memory model atomics 
needed to guarantee correctness 

• Polls with acquire semantics 

• Signal with acquire-release semantics 

• Writes from subgroups signaling a 
counter update need to be visible in 
subgroups polling for the same 
counter update 

• Major drawback is inability to extract 
partial parallelism across 
wavefronts. 

 

 

void poll(__global atomic_int* counter, int threshold) { 

    int entry = threshold - 1; 

    // Only one representative work-item from representative subgroup  

    // needs to poll. 

    if (get_sub_group_local_id()==0&&  get_sub_group_id() == 0) { 

        while (entry != threshold) { 

            entry = atomic_load_explicit( 

                 counter, memory_order_acquire, memory_scope_device); 

        } 

    }    

   work_group_barrier(CLK_LOCAL_MEM_FENCE); 

} 

 

void signal(__global atomic_int* counter) { 

    // Only one representative work-item from representative subgroup  

    // needs to signal. 

    if (get_sub_group_local_id() == 0) { 

        atomic_fetch_add_explicit( 

            counter, 1, memory_order_acq_rel, memory_scope_device); 

  } 

} 

Synchronization functions 



Persistent Threads with Cyclic Computation 
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• Data partitioned into unit intervals along 
an axis and assigned to persistent 
threads in round-robin 

• Only works if no forward dependency 
across intervals 

• For 45˚ wavefront, cyclic distribution 
along x or y axis 

• For 26˚ wavefront, cyclic distribution 
only along y because of top-right 
dependency 

• Persistent threads - one subgroup per 
WG 

45˚ wavefront data distribution 

WG0    WG1    WG2     WG3      WG0     WG1    WG2      

1-step 

intervals 

26˚ wavefront data distribution 

WG0 

WG1 

WG2 

WG3 

WG0 

WG1 

2-step 

intervals 



Persistent Threads with Cyclic Computation 
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• Subgroups process intervals 

• Synch using global memory counters – 
one per WG 

• Similar pair of sync functions 

• Enables overlapped partial execution 
of multiple wavefronts 

• Drawback is not having enough 
threads to saturate GPU for lower 
resolutions 

 

 

 

Cyclic computation of wavefronts 

int2 mbid = { get_group_id(0), 0 }; 

do { 

   int2 imgsize = get_image_dim(srcimg); 

   int2 framembsize = (imgsize + (int2)(15, 15)) / 16; 

    preprocess(…); 

    if (mbid.x > 0) { 

        poll(scoreboard + mbid.x - 1, mbid.y + 1); 

    } 

    if (!skip_block) { 

        block_motion_estimate_process(...); 

    } 

    signal(scoreboard + mbid.x); 

    postprocess(…); mbid.y += 1; 

    // Cycle computation in interval  

    if (mbid.y == framembsize.y) { 

        mbid.y = 0; mbid.x += get_num_groups(0); 

    } 

 } while (mbid.x < framembsize.x); 

  

Poll neighbor interval counter 

Signal current interval counter 



Distributed Computation of Wavefronts 
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• Similar to cyclic computation approach 

• Proposed extension for OpenCL runtime 
to fill GPU deterministically using pre-
defined pattern 

• reqd_launch_pattern(pattern) 

• ‘native’ or ‘raster’, or ‘custom’ patterns 

• Eliminates cycling step 

• Enables WG-level pre-emption if in an 
environment with context switch latency 
requirements 

 

 
26˚ wavefront data distribution 

45˚ wavefront data distribution 

WG0    WG1    WG2     WG3      WG4     WG5    WG6      

WG0 

WG1 

WG2 

WG3 

WG4 

WG5 

1-step 

wavefronts 

2-step 

wavefronts 



Persistent Threads with Cyclic Computation of Multiple 
Independent Wavefronts 
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• Enhancement of basic cyclic computation to 
address key drawbacks 

• Unable to saturate GPU for smaller frames 

• Lesser parallelism during wavefront 
expansion/contraction phases 

• Process multiple independent wavefronts 

• from independent encode streams, or 

• from independent slices within same stream 

• we chose 3 wavefronts from different streams 

 

Plot of parallelism as single wavefront progresses 

Plot of parallelism with multiple wavefronts 



Persistent Threads with Cyclic Computation of Multiple 
Independent Wavefronts 
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• Scaled version of basic cyclic 
approach 

• One persistent WG processing 
intervals from one set of independent 
wavefronts 

• Three WGs 

• Maximal launch of subgroups in WGs 

• Difference global counters across 
WGs for sync 

• Other benefits 

• Better L1/L2 sampler cache locality 

 

 

 

Cyclic computation of multiple independent wavefronts 

int2 mbid = { 0, get_sub_group_id() };  

int2 imgsize = get_image_dim(src0img); 

int2 framembsize = (imgsize + (int2)(15, 15)) / 16; 

do { 

    preprocess(…); 

    if (mbid.y > 0) { 

        uint threshold = mbid.x + wavefront_step_size; 

        threshold = (threshold>framembsize.x)? framembsize.x: threshold; 

        poll(scoreboard + mbid.y - 1, threshold, mbid); 

    } 

    if (get_group_id(0) == 0) { 

        if (!skip_block[0])  block_motion_estimate_process(..., src0img, ...) 

    } else if (get_group_id(0) == 1) { 

        if (!skip_block[1])  block_motion_estimate_process(..., src1img, ...) 

    } else if (get_group_id(0) == 2) { 

        if (!skip_block[2])   block_motion_estimate_process(..., src2img, ...) 

    } 

    signal(scoreboard + mbid.y); 

    postprocess(…); mbid.x += 1; 

    if (mbid.x == framembsize.x) { 

        mbid.x = 0;  mbid.y += get_num_sub_groups(); 

    } 

} while (mbid.y < framembsize.y); 

Poll wavefront neighbor thread counter 

Signal wavefront current thread counter 
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PERFORMANCE EVALUATIONS 
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Performance Evaluation – Experiment Setup 
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• Key performance metrics 

• GPU execution time per frame 

• Overall performance 

• VME engine busyness  

• Parallelism extracted 

• Count of atomic operations 

• Efficiency of sync 

 • Test sequences 

• 480p (858x480), 72-p (1280x720), 1080p (1920x1080), 4k (3840x2160) 

• 15 planar YUV frames 

• Force max workgroup size to be 896 

Intel® Graphics 530 Architecture 

1 1 1 

Global 

Thread 

Dispatcher 



Performance Evaluation – Key Observations 
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GPU execution times comparison 

• Distributed wavefront sweep performed 
poorly despite most efficient sync 

• Low sampler utilization 

• Extracting parallelism more important 

• Cyclic & Distributed computation 
solutions performed identically 

• Multiple independent wavefront solution 
performed best specially for lower 
resolutions 

• For 480p 21% over basic cyclic solution; sampler 
utilization up to 96% from 65% 

• For 4K no noticeable improvement over basic 

 

GPU media samples busyness comparison 



Performance Evaluation – Key Observations 
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GPU atomic operation comparison 

• Distributed wavefront sweep performed 
most efficient sync as expected 

• Cyclic & Distributed computation 
solutions had quite of but of idle polling 
and bandwidth utilization 

• Multiple independent wavefront solution 
performed well 

• Lesser threads per independent wavefront; but 
enough to keep sampler busy 

• Ergo lesser idle polling load per set of global sych 
counters 
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Summary 
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• Background and Challenges with WPP on GPUs 

• Evaluated 4 WPP solutions for video encoding on Intel® Processor 
Graphics 

• Cost of sync is not as significant when compared to the efficiency of extracting 
parallelism 

• Efficiency of sync improved by running just as many threads to keep the VME 
engine busy 

• Cyclic computation with multiple independent wavefronts solution performed 
best overall particularly for 720p resolutions and below 

• In cases where only one encode stream is available basic cyclic computation 
solution is recommended unless multi-slice is an option 
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