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Overview

1. Introduction
I Compressed sensing for electron tomography
I Python Sparse data Analysis Package (PySAP)
I Graphic processing Units (GPU)

2. Development
I Sparse transform (I): Variational Type: TV, TGV
I Sparse transform (II): Wavelet
I Sparse transform (III): Mixed type: Ridgelet, wt tv, polar tv
I Optimisation algorithms

3. To-do list
I Given an image, empirically determine the best parameter and

sparse transform for the compressed sensing problem
I Replace the generic primal-dual algorithms by others in

ModOpt
I Test X-ray tomography and spectro-tomography
I Move the optimisation algorithm to GPU?



Introduction

I Compressed sensing electron tomography using Python

I Python Sparse data Analysis Package (PySAP)

I Graphic processing Units (GPU)



Compressed sensing electron tomography using Python

I Purpose: to accelerate the image acquisition with a reduced
number of projections

I Solving the minimisation problem:

x = arg min
x
‖y − Ax‖2 + λ|Ψx | (1)

x : image
y : sinogram
A: Radon transform
Ψ: sparse transform

I Previous compressed sensing electron tomography: TV [1],
Total nuclear norm [2], HOTV [3], TGV [4], wavelets (Jacob
-)

I Python: Numpy/Scipy is the current standard tool in data
science community.



Python Sparse data Analysis Package (PySAP)

Figure: ET as an application of PySAP



Graphics processing units (GPUs)

I Massive parallelism, but hard to be integrated into Python

I GPU-powered Radon transform Python packages are available
I astra-toolbox [5]: using CUDA and ctype; the installation is

tricky
I Huber 2019 [4]: a script which accelerates TGV using

PyOpenCL
I Fourier domain using PyNUFFT [6]: PyCUDA and PyOpenCL

ready. Now I have created the PyNUFFT-based 2D Radon
transform (including numpy, PyCUDA and PyOpenCL).
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Development

I Sparse transform (I): Variational Type: TV, TGV

I Sparse transform (II): Wavelet

I Sparse transform (III): Mixed type: Ridgelet, wt tv, polar tv

I Optimisation algorithms



Sparse transform (I): Variational Type: TV, TGV

I Any variational type sparse transform can be represented as a
scipy.sparse.linalg.LinearOperator.
I TV: isotropic and anisotropic
I TGV: total generalised variation

I Easily plugged into the TV-like optimisation algorithms.

I However, isotropic TV uses the root-sum-squared of the
directional image gradients, which is non-linear.

I s =
√
sx2 + sy2 can be easily coded before the non-linear

saturation function

I Refer to the comset.linalg.radon2d.tv iso function

I I use Equation (34) in [7]



Sparse transform (II): Wavelet

I Decimated: using the wavedecn and waverecn in Pywavelets,
but shift-variant

I Undecimated: the stationary (à trous) algorithm: using the
swtn and iswtn

I It just works using parameters: ’bior4.4’, level = 4,
norm=False, trim approx=True

I For now, the simple primal-dual algorithm (Equation (15) in
[7]) is used.

I The optimisation may converge faster with ModOpt.



Sparse transform (III): Mixed type: Ridgelet, wt tv,
polar tv

I No definite conclusion but the following mixed types have
been implemented:
I Ridgelet transform: originally proposed for denoising. 1D

wavelet along the radial direction in the Radon domain (See
comset.linalg.radon.ridgelet)

I wt tv: Plug the simple primal-dual shrinkage thresholding into
the tv regularization (See comset.linalg.radon.wt tv)

I polar tv: apply the anisotropic TVs in the real image domain
and the Radon domain. (See comset.linalg.radon.polar tv)



Optimisation algorithms

I Loris and Verhoeven [7] explicitly wrote two algorithms for
variational type and wavelets type regularizations.

I ”variational type”: No inverse transform exists for the TV or
TGV

I ”wavelet type”: The inverse transform exists for a wavelet
transform

I have tried Equation (15) for wavelet type and Equation (34) for
variational type



To-do list

I Given an image, empirically determine the best parameter and
sparse transform for the compressed sensing problem

I Replace the generic primal-dual algorithms by the ones in
ModOpt

I Test X-ray tomography and spectro-tomography

I Move the optimisation algorithm to GPU?
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