
PySAP-ComSET: an accelerated Python package
for compressed sensing electron tomography

(CS-ET) reconstruction

JyhMiin Lin 1 Martin Jacob 1 Zineb Saghi 1

Philippe Ciuciu 2 Jean-Luc Starck 3

1Leti, CEA Grenoble

2Neurospin, CEA Paris-Saclay

3CosmoStat, CEA Paris-Saclay

IWOCL ’20: International Workshop on OpenCL Munich
Germany, April, 2020

Overview

1. Introduction
I Compressed sensing for electron tomography
I Python Sparse data Analysis Package (PySAP)
I Graphic processing Units (GPU)

2. Development
I Sparse transform (I): Variational Type: TV, TGV
I Sparse transform (II): Wavelet
I Sparse transform (III): Mixed type: Ridgelet, wt tv, polar tv
I Optimisation algorithms

3. To-do list
I Given an image, empirically determine the best parameter and

sparse transform for the compressed sensing problem
I Replace the generic primal-dual algorithms by others in

ModOpt
I Test X-ray tomography and spectro-tomography
I Move the optimisation algorithm to GPU?

Introduction

I Compressed sensing electron tomography using Python

I Python Sparse data Analysis Package (PySAP)

I Graphic processing Units (GPU)

Compressed sensing electron tomography using Python

I Purpose: to accelerate the image acquisition with a reduced
number of projections

I Solving the minimisation problem:

x = arg min
x
‖y − Ax‖2 + λ|Ψx | (1)

x : image
y : sinogram
A: Radon transform
Ψ: sparse transform

I Previous compressed sensing electron tomography: TV [1],
Total nuclear norm [2], HOTV [3], TGV [4], wavelets (Jacob
-)

I Python: Numpy/Scipy is the current standard tool in data
science community.

Python Sparse data Analysis Package (PySAP)

Figure: ET as an application of PySAP

Graphics processing units (GPUs)

I Massive parallelism, but hard to be integrated into Python

I GPU-powered Radon transform Python packages are available
I astra-toolbox [5]: using CUDA and ctype; the installation is

tricky
I Huber 2019 [4]: a script which accelerates TGV using

PyOpenCL
I Fourier domain using PyNUFFT [6]: PyCUDA and PyOpenCL

ready. Now I have created the PyNUFFT-based 2D Radon
transform (including numpy, PyCUDA and PyOpenCL).

NVIDIA QuADro P4000 | DAtA Sheet | JuN18

1 VGA/DVI/HDMI/stereo support via adapter/connector/bracket | 2 NVIDIA Quadro Sync II board sold separately. Learn more at www.
nvidia.com/quadro | 3 Windows 7, 8, 8.1, 10 and Linux | 4 Please refer to http://developer.nvidia.com/video-encode-decode-gpu-
support-matrix for details on NVIDA GPU video encode and decode support | 5 Product is based on a published Khronos Specification,
and is expected to pass the Khronos Conformance Testing Process when available. Current conformance status can be found at www.
khronos.org/conformance | 6 GPU supports DX 12.0 API Hardware Feature Level 12_1

© 2018 NVIDIA Corporation. All rights reserved. NVIDIA, the NVIDIA logo, Quadro, nView, CUDA, and NVIDIA Pascal are trademarks and/
or registered trademarks of NVIDIA Corporation in the U.S. and other countries. OpenCL is a trademark of Apple Inc. used under license to
the Khronos Group Inc. All other trademarks and copyrights are the property of their respective owners.

extreme Visual Computing
Performance in a Single
Slot Form Factor.
The NVIDIA Quadro P4000 combines a 1792 CUDA core
Pascal GPU, large 8 GB GDDR5 memory and advanced
display technologies to deliver the performance and
features that are required by demanding professional
applications. The ability to create an expansive visual
workspace of up to four 5K displays (5120x2880 @ 60Hz)
with HDR color support lets you view your creations in
stunning detail. The P4000 is specially designed with
the performance that is necessary to drive immersive
VR environments. Additionally, you can create massive
digital signage solutions of up to thirty-two 4K displays
per system by connecting multiple P4000s via Quadro
Sync II2.

Quadro cards are certified with a broad range of
sophisticated professional applications, tested by leading
workstation manufacturers, and backed by a global
team of support specialists. This gives you the peace
of mind to focus on doing your best work. Whether
you’re developing revolutionary products or telling
spectacularly vivid visual stories, Quadro gives you the
performance to do it brilliantly.

FEATURES
 > Four DisplayPort 1.4
Connectors1

 > DisplayPort with Audio
 > 3D Stereo Support with Stereo
Connector1

 > NVIDIA GPUDirect™ Support
 > Quadro Sync II2 Compatibility
 > NVIDIA nView® Desktop
Management Software

 > HDCP 2.2 Support
 > NVIDIA Mosaic3
 > Dedicated hardware video
encode and decode engines4

SPECIFICATIONS
GPU Memory 8 GB GDDR5

Memory Interface 256-bit

Memory Bandwidth Up to 243 GB/s

NVIDIA CUDA® Cores 1792

System Interface PCI Express 3.0 x16

Max Power Consumption 105 W

Thermal Solution Active

Form Factor 4.4” H x 9.5” L,
Single Slot, Full Height

Display Connectors 4x DP 1.4

Max Simultaneous
Displays

4 direct, 4 DP 1.4
Multi-Stream

Display Resolution 4x 4096x2160 @ 120Hz
4x 5120x2880 @ 60Hz

Graphics APIs Shader Model 5.1,
OpenGL 4.55,
DirectX 12.06,
Vulkan 1.05

Compute APIs CUDA, DirectCompute,
OpenCL™

uNMAtCheD PoWer.
uNMAtCheD CreAtIVe
FreeDoM.
NVIDIA® QuADro® P4000

To learn more about the NVIDIA Quadro P4000 visit www.nvidia.com/quadro

Figure: Quadro P4000

Development

I Sparse transform (I): Variational Type: TV, TGV

I Sparse transform (II): Wavelet

I Sparse transform (III): Mixed type: Ridgelet, wt tv, polar tv

I Optimisation algorithms

Sparse transform (I): Variational Type: TV, TGV

I Any variational type sparse transform can be represented as a
scipy.sparse.linalg.LinearOperator.
I TV: isotropic and anisotropic
I TGV: total generalised variation

I Easily plugged into the TV-like optimisation algorithms.

I However, isotropic TV uses the root-sum-squared of the
directional image gradients, which is non-linear.

I s =
√
sx2 + sy2 can be easily coded before the non-linear

saturation function

I Refer to the comset.linalg.radon2d.tv iso function

I I use Equation (34) in [7]

Sparse transform (II): Wavelet

I Decimated: using the wavedecn and waverecn in Pywavelets,
but shift-variant

I Undecimated: the stationary (à trous) algorithm: using the
swtn and iswtn

I It just works using parameters: ’bior4.4’, level = 4,
norm=False, trim approx=True

I For now, the simple primal-dual algorithm (Equation (15) in
[7]) is used.

I The optimisation may converge faster with ModOpt.

Sparse transform (III): Mixed type: Ridgelet, wt tv,
polar tv

I No definite conclusion but the following mixed types have
been implemented:
I Ridgelet transform: originally proposed for denoising. 1D

wavelet along the radial direction in the Radon domain (See
comset.linalg.radon.ridgelet)

I wt tv: Plug the simple primal-dual shrinkage thresholding into
the tv regularization (See comset.linalg.radon.wt tv)

I polar tv: apply the anisotropic TVs in the real image domain
and the Radon domain. (See comset.linalg.radon.polar tv)

Optimisation algorithms

I Loris and Verhoeven [7] explicitly wrote two algorithms for
variational type and wavelets type regularizations.

I ”variational type”: No inverse transform exists for the TV or
TGV

I ”wavelet type”: The inverse transform exists for a wavelet
transform

I have tried Equation (15) for wavelet type and Equation (34) for
variational type

To-do list

I Given an image, empirically determine the best parameter and
sparse transform for the compressed sensing problem

I Replace the generic primal-dual algorithms by the ones in
ModOpt

I Test X-ray tomography and spectro-tomography

I Move the optimisation algorithm to GPU?

References I

Zineb Saghi, Daniel J Holland, Rowan Leary, Andrea Falqui,
Giovanni Bertoni, Andrew J Sederman, Lynn F Gladden, and
Paul A Midgley.
Three-dimensional morphology of iron oxide nanoparticles with
reactive concave surfaces. a compressed sensing-electron
tomography (CS-ET) approach.
Nano letters, 11(11):4666–4673, 2011.

Zhichao Zhong, Willem Jan Palenstijn, Jonas Adler, and
K Joost Batenburg.
Eds tomographic reconstruction regularized by total nuclear
variation joined with HAADF-STEM tomography.
Ultramicroscopy, 191:34–43, 2018.

References II

Toby Sanders, Anne Gelb, Rodrigo B Platte, Ilke Arslan, and
Kai Landskron.
Recovering fine details from under-resolved electron
tomography data using higher order total variation l1
regularization.
Ultramicroscopy, 174:97–105, 2017.

Richard Huber, Georg Haberfehlner, Martin Holler, Gerald
Kothleitner, and Kristian Bredies.
Total generalized variation regularization for multi-modal
electron tomography.
Nanoscale, 11(12):5617–5632, 2019.

References III

Wim van Aarle, Willem Jan Palenstijn, Jan De Beenhouwer,
Thomas Altantzis, Sara Bals, K Joost Batenburg, and Jan
Sijbers.
The ASTRA toolbox: A platform for advanced algorithm
development in electron tomography.
Ultramicroscopy, 157:35–47, 2015.

Jyh-Miin Lin.
Python non-uniform fast fourier transform (PyNUFFT): An
accelerated non-Cartesian MRI package on a heterogeneous
platform (CPU/GPU).
Journal of Imaging, 4(3):51, 2018.

References IV

Ignace Loris and Caroline Verhoeven.
Iterative algorithms for total variation-like reconstructions in
seismic tomography.
GEM-International Journal on Geomathematics, 3(2):179–208,
2012.

