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Conservation laws

Many equations in physics are systems of conservation laws
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I
W = W (x , t) 2 Rm: vector of conserved quantities, F i (W ):
flux vector.

I
x = (x1 . . . xd): space variable, d : space dimension, t: time;

Applications: fluid mechanics, electromagnetics, . . .
Outlines:

1. 2D structured grids, synchronous OpenCL/MPI based
numerical simulations.

2. 3D unstructured grids, asynchronous OpenCL/MPI based
numerical simulations.



1) Structured grid

First simple approach: discretization of a 2D equation (d = 2) on a
structured grid
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I Grid step: �x

I We compute samples W

n
i ,j of W (x , t) at grid points

x = (i�x , j�x) and time t = n�t.
I Finite Difference (FD) method:
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OpenCL implementation

The data are arranged in a (i , j) matrix. 1 work-item = 1 cell (i , j).
1 work-group = 1 row i .
For each time step n:

I compute the fluxes balance in the x

1-direction for each cell of
each row of the grid.

I transpose the matrix (exchange i and j) in a coalescent way.
I compute the fluxes balance in the x

2-direction for each row of
the transposed grid.

I transpose again the matrix.



OpenCL + synchronous MPI

I Use of several GPUs;

I Subdomain decomposition;

I 1 GPU = 1 subdomain = 1
MPI node;

I MPI for exchanging data
between GPUs (greyed cells
layers).
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Comparisons

On large grids (> 1024 ⇥ 1024). We compare:
I an optimized OpenMP implementation of the FD scheme on

2x6-core CPUs;
I the OpenCL implementation running on 2x6-core CPUs,

NVidia or AMD GPU;
I the OpenCL+MPI implementation running on 4 GPUs.

Implementation Time Speedup
OpenMP (CPU Intel 2x6 cores) 717 s 1
OpenCL (CPU Intel 2x6 cores) 996 s 0.7
OpenCL (NVidia Tesla K20) 45 s 16

OpenCL (AMD Radeon HD 7970) 38 s 19
OpenCL + MPI (4 x NVIDIA K20) 12 s 58



Shock-bubble interaction

I Simulation of a compressible two-fluid flow: interaction of a
shock wave in a liquid with a gas bubble

I Coarse mesh OpenCL simulation on an AMD HD 5850
I OpenGL/OpenCL interop + video capture.

https://www.youtube.com/watch?v=c8hcqihJzbw

https://www.youtube.com/watch?v=c8hcqihJzbw


Very fine mesh

I Very fine mesh OpenCL + MPI simulation, 40,000x20,000
grid. 4 billions unknowns per time step

I 10xNVIDIA K20 GPUs, 30 hours
I Red=high density (compressed liquid); blue=low density (gas).
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2) Unstructured grid

I Unstructured hexahedrons mesh for representing complex
geometries.

I Subdomain decomposition. 1 domain = 1 MPI node = 1
OpenCL device.

I Zone decomposition. Each subdomain is split into volume
zones and interface zones.

I Non-conformity between zones is allowed.



Mesh example

A non-conforming mesh with two subdomains, three volume zones
and three interface zones.

I Subdomain 1: only one big
refined volume zone. Two
interface zones.

I Subdomain 2: two small
volume zones (coarse and
refined). Three interface
zones.



Mesh structure
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Discontinuous Galerkin (DG) approximation

Generalization of the FD method: DG method in a 3D space.
In each cell L of the mesh, the conserved quantities are expanded
on Lagrange polynomial basis functions

W (x , t) = W

j
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L
j (x), x 2 L.

I
L is a (possibly stretched)
hexahedron

I
W is determined by its
values at the blue points

I
W is discontinuous at
green points.



DG formulation

The numerical solution satisfies the DG approximation scheme
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R denotes the neighbor
cells along @L.

I
nLR is the unit normal
vector on @L oriented from
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flux.

I
F (W ,W , n) = F

k(W )nk .

nLR

@L \ @R

L

R

Time integration of a system of ordinary differential equations.



OpenCL + asynchronous MPI
advantages of the DG formulation:

I new possibilities: varying polynomial order, mesh refinement,
complex geometries.

I local stencil.
I high polynomial order ) high amount of uniform local parallel

computations.
I many optimizations for hexahedrons meshes.
I natural MIMD/SIMD parallelism: subdomains (MPI),

elementary computations (OpenCL).
possible issues:

I memory access (unstructured mesh) at interfaces between cells
! hard to avoid...

I branch tests in GPU kernels ! compile a customized kernel
for each zone.

I MPI communications imply GPU/Host memory transfers !
overlap transfers and computations.



Task graph



Task graph



MPI/OpenCL events management

Problem: how to express the dependency between MPI and
OpenCL operations ?

I We decided to rely only on the OpenCL events management.
I The beginning of a task depends on the completions of a list

of OpenCL events. The task is itself associated to an OpenCL
event.

I At an interface zone between two subdomains, an extraction
task contains a GPU to host memory transfer, a MPI
send/receive communication and a host to GPU transfer.

I we create an OpenCL user event, and launch a MPI blocking
sendrecv in a thread. At the end of the communication, in the
thread, the OpenCL event is marked as completed. Using
threads avoids blocking the main program flow.



Results

Big mesh, polynomial order D = 3, NVIDIA K20 GPUs, infiniband
network.

1 GPU 2 GPUs 4 GPUs 8 GPUs
Sync. TFLOPS/s 1.01 1.84 3.53 5.07
ASync. TFLOPS/s 1 1.94 3.74 7.26

We achieve ' 30% of the peak performance.



Application
I Electromagnetic wave interaction with an aircraft (Maxwell

equations).
I Aircraft geometry described with 3, 337, 875 hexaedrons ('1

billion unknowns per time step): mesh of the interior and
exterior of the aircraft.

I We use 8 GPUs to perform the computation. The simulation
does not fit into a single GPU memory.



Conclusion

I Many physical models are conservation laws. Among them:
two-fluid flows, electromagnetics.

I Efficient OpenCL/MPI computing requires adapted data
structures.

I OpenCL allows driving asynchronous computations and MPI
communications.

I Work in progress: optimizing unstructured memory access,
more sophisticated runtime, new physical models.

For more details and a bibliography see:
https://hal.archives-ouvertes.fr/hal-01134222v2

https://hal.archives-ouvertes.fr/hal-01134222v2

