
The Great Beyond: Higher Productivity, Parallel
Processors and the Extraordinary Search for a Theory of
Expression

Alan S. Ward
Distinguished Member Technical Staff,
Manager, Multicore Development Tools
Texas Instruments

Title Inspiration:
 “The Great Beyond: Higher Dimensions, Parallel Universes and the Extraordinary Search for a Theory of Everything”,
 Paul Halpern

SoC Trends

DSP
DSP DSP DSP DSP DSP DSP DSP DSP

DSP DSP DSP DSP DSP DSP DSP DSP

ARM ARM ARM CPU
DSP DSP ARM CPU

ARM uC GPU

DSP DSE

DSP H. IP GPU

• Power, Performance, and Area (Cost) is optimized through specialization and replication.
– The business case is clear !

• The cost:
– Increased software complexity
– Specialized developer skills
– Reduced application portability

• The goal:
– Keep the benefits of hardware specialization and replication,
– And eliminate reduce the delta cost!

Single Core Multicore Heterogeneous Multicore Various Multicore

DSP Digital Signal Processor
DSE Domain Specific Engine
H. IP Hardware IP block
uC Microcontroller

Maintaining Software Investment / Facilitating OpenCL Adoption

DSP
DSP DSP DSP DSP DSP DSP DSP DSP

DSP DSP DSP DSP DSP DSP DSP DSP

ARM ARM ARM CPU

Single Core Multicore Heterogeneous Multicore

OpenMP OpenCL

An answer of “rewrite using “pure” OpenCL” was rejected
– Additional cost for status quo !
– Additional code base as the OpenCL version would not backward run on the multicore platforms.

Simple solution (examples)
– Allow OpenCL C code to call standard C code (including OpenMP enabled C code)
– Provide a means for dynamic heap allocation (all memory spaces) that does not conflict with OpenCL runtime allocations.

Single Core to Multicore
– OpenMP introduced
– New software application can run single or multicore

Multicore to Heterogeneous Multicore
– OpenCL introduced, but ….

• What about existing code?
• What about OpenMP in existing code?
• What about malloc/free in existing code?
• What about ???

OpenMP 4.0
target clause

OpenCL C calling Standard C

const char *kern_src = " kernel void oclwrapper(global char * buf, int size) { alg(&buf[get_group_id(0)*size], size); } ";

Program::Sources source(1, make_pair(kern_src, strlen(kern_src)));

Program program = Program(context, source);

program.build(devices, "ccode.obj“);

Standard C function

Resolved by this object code,
Passed as a build option

• The standard C Code is pre-compiled outside the OpenCL context and the resultant object filename is simply
passed as an option to the OpenCL C build method.

– Could use 1.2 separate compile and link model
– However, current implementation is 1.1 conformant and we wished to us the 1.1 C++ bindings unmodified.

• If the alg function is OpenMP enabled
– The OpenMP runtime is embedded in our OpenCL runtime, so nothing further is needed on the build side.
– On the run side, user must ensure parallelism from OpenCL kernels and parallelism from OpenMP do not conflict

• Ensured if the kernel is submitted to an “in order” queue as a task (i.e. 1 work-item)

TI’s Logical View of OpenCL execution

OpenCL C calling Std C calling malloc/free
const char *kern_src = " kernel void oclwrapper(global char * buf, int size)

 {

 __heap_init_ddr(buf, size);

 std_c_app();

 } ";

Initialize a heap that can be used in subsequent code

• Unadorned malloc/free are available
– But, to a size limited heap.
– Did not want to partition available memory between OpenCL managed and malloc managed.
– Did not want to have devices send malloc/free requests to the host

• Created adorned malloc/free
– Using additional built-in functions

• __heap_init_ddr, __malloc_ddr, __free_ddr
• __heap_init_msmc, __malloc_msmc, __free_msmc
• __heap_init_l2, __malloc_l2

– DDR and MSMC heaps persist for the lifetime of the buffer containing the heap
– L2 heaps persist for the lifetime of a kernel invocation

A Different View of OpenCL:
 OpenCL Reduces Software Complexity ?

It depends on your frame of reference !

If this is your frame of reference No

If this is your frame of reference or Yes

CPU

CPU GPU

DSP DSP ARM CPU

ARM uC GPU

DSP DSE

DSP H. IP GPU

Custom Device feature extends OpenCL control

Three Categories of non OpenCL C capability
– uC, microcontrollers

• No support floating point, (emulated at cost)

– DSE, Domain Specific Engine
• Specialized ISA, not generally programmable
• Can be programmed with a DSL

– H. IP, Hardware IP blocks
• Fixed function
• May have controls, configurations
• Consumes and/or Produces

Still useful to leverage OpenCL buffers, events on
these alternative devices.

Custom Device allows them to be programmed with
either:

– An OpenCL C subset
– A DSL
– Selection from a set of fixed functions.

DSP DSP DSP DSP DSP DSP DSP DSP

ARM ARM ARM CPU
DSP DSP ARM CPU

ARM uC GPU

DSP DSE

DSP H. IP GPU

Heterogeneous Multicore Various Multicore

OpenCL
Custom Device

OpenCL execution model:
A fit for Classical Embedded?

Typical OpenCL applications execute in a master-worker model.
– Host is responsible for execution, scheduling, and data availability.

Typical Embedded execution is a data flow model.
– Distributed control and execution
– The algorithm is partitioned into multiple blocks.

• Each block is assigned to a device compute unit.
• The output of one block is input directly to the next block.
• A block is stimulated awake by data ready

– Partition the algorithm to optimize performance
– The flow typically repeats on a regular basis

9

Device 2 domain

Host domain

Device 1 domain

App

Kernel

Kernel

Kernel

S
en

so
r A

rra
y

DSP

DSP

DSP

DSP

DSP

DSP

DSP

DSP CPU

E
th

er
ne

t

OpenCL execution model:
A fit for Classical Embedded?

In a shared virtual memory domain:
– The data can flow direct
– No communication hops through host required

OpenCL 2.x added a number of features that assist a Data Flow
Model:

– Pipes
– Shared virtual memory, in general
– Fine grained virtual memory, memory ordering rules and atomics
– Device side kernel enqueue

OpenCL 1.2 added Device Partitioning
– Which allows a static partition of algorithmic blocks to reserved

portions of a device.

10

Device 2 domain

Host domain

Device 1 domain

App

Kernel

Kernel

Kernel

Control Flow
Data Flow

DSP

DSP

DSP

DSP
DSP

DSP
DSP

DSP
DSP

DSP
DSP

DSP
DSP

DSP
DSP

But, What about ?
• Using the OpenCL 2.0 feature set

– We can implement the data flow model within a device,
– In a power efficient manner.

• But, what about data flow across devices?
– Can’t use device-side enqueue, for example
– Perhaps?
– Power efficient?

DSP DSP DSP DSP DSP DSP DSP DSP

ARM ARM ARM CPU

DSP DSP ARM CPU

ARM uC GPU

DSP DSE

DSP H. IP GPU

	The Great Beyond: Higher Productivity, Parallel Processors and the Extraordinary Search for a Theory of Expression
	SoC Trends
	Maintaining Software Investment / Facilitating OpenCL Adoption
	OpenCL C calling Standard C
	TI’s Logical View of OpenCL execution
	OpenCL C calling Std C calling malloc/free
	A Different View of OpenCL:�	OpenCL Reduces Software Complexity ?
	Custom Device feature extends OpenCL control
	OpenCL execution model: �A fit for Classical Embedded?
	OpenCL execution model: �A fit for Classical Embedded?
	But, What about ?

