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• Power, Performance, and Area (Cost) is optimized through specialization and replication. 
– The business case is clear ! 

• The cost: 
– Increased software complexity 
– Specialized developer skills 
– Reduced application portability 

• The goal:  
– Keep the benefits of hardware specialization and replication,  
– And eliminate reduce the delta cost!  
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DSP    Digital Signal Processor 
DSE    Domain Specific Engine 
H. IP    Hardware IP block 
uC       Microcontroller 

 



Maintaining Software Investment / Facilitating OpenCL Adoption 
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An answer of “rewrite using “pure” OpenCL” was rejected 
– Additional cost for status quo ! 
– Additional code base as the OpenCL version would not backward run on the multicore platforms. 

Simple solution (examples) 
– Allow OpenCL C code to call standard C code (including OpenMP enabled C code) 
– Provide a means for dynamic heap allocation (all memory spaces) that does not conflict with OpenCL runtime allocations. 

Single Core to Multicore 
– OpenMP introduced 
– New software application can run single or multicore 

 

Multicore to Heterogeneous Multicore 
– OpenCL introduced, but …. 

• What about existing code? 
• What about OpenMP in existing code? 
• What about malloc/free in existing code? 
• What about ??? 

OpenMP 4.0 
target clause 



OpenCL C calling Standard C  

const char *kern_src = " kernel void oclwrapper(global char * buf, int size) { alg(&buf[get_group_id(0)*size], size); } "; 

Program::Sources source(1, make_pair(kern_src, strlen(kern_src))); 

Program  program = Program(context, source); 

program.build(devices, "ccode.obj“); 

Standard C function 

Resolved by this object code, 
Passed as a build option 

• The standard C Code is pre-compiled outside the OpenCL context and the resultant object filename is simply 
passed as an option to the OpenCL C build method. 

– Could use 1.2 separate compile and link model 
– However, current implementation is 1.1 conformant and we wished to us the 1.1 C++ bindings unmodified. 
 

• If the alg function is OpenMP enabled 
– The OpenMP runtime is embedded in our OpenCL runtime, so nothing further is needed on the build side. 
– On the run side, user must ensure parallelism from OpenCL kernels and parallelism from OpenMP do not conflict 

• Ensured if the kernel is submitted to an “in order” queue as a task (i.e. 1 work-item) 



TI’s Logical View of OpenCL execution  



OpenCL C calling Std C calling malloc/free 
const char *kern_src = " kernel void oclwrapper(global char * buf, int size)  

                {  

                                                __heap_init_ddr(buf, size); 

                                                std_c_app();   

                } "; 

Initialize a heap that can be used in subsequent code  

• Unadorned malloc/free are available 
– But, to a size limited heap.  
– Did not want to partition available memory between OpenCL managed and malloc managed. 
– Did not want to have devices send malloc/free requests to the host 

• Created adorned malloc/free 
– Using additional built-in functions 

• __heap_init_ddr,      __malloc_ddr,     __free_ddr 
• __heap_init_msmc, __malloc_msmc, __free_msmc 
• __heap_init_l2,        __malloc_l2 

– DDR and MSMC heaps persist for the lifetime of the buffer containing the heap 
– L2 heaps persist for the lifetime of a kernel invocation 



A Different View of OpenCL: 
 OpenCL Reduces Software Complexity ? 

It depends on your frame of reference ! 

 

 

If this is your frame of reference                             No 

 

 

If this is your frame of reference               or                          Yes 
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Custom Device feature extends OpenCL control  

Three Categories of non OpenCL C capability 
– uC, microcontrollers 

• No support floating point, (emulated at cost) 
 

– DSE, Domain Specific Engine 
• Specialized ISA, not generally programmable 
• Can be programmed with a DSL 
 

– H. IP, Hardware IP blocks 
• Fixed function 
• May have controls, configurations 
• Consumes and/or Produces  

Still useful to leverage OpenCL buffers, events on 
these alternative devices.  

Custom Device allows them to be programmed with 
either: 

– An OpenCL C subset 
– A DSL 
– Selection from a set of fixed functions. 
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OpenCL execution model:   
A fit for Classical Embedded? 

Typical OpenCL applications execute in a master-worker model. 
– Host is responsible for execution, scheduling, and data availability. 

 

 

 

 

Typical Embedded execution is a data flow model. 
– Distributed control and execution 
– The algorithm is partitioned into multiple blocks. 

• Each block is assigned to a device compute unit. 
• The output of one block is input directly to the next block. 
• A block is stimulated awake by data ready 

– Partition the algorithm to optimize performance 
– The flow typically repeats on a regular basis 
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OpenCL execution model:   
A fit for Classical Embedded? 

In a shared virtual memory domain: 
– The data can flow direct 
– No communication hops through host required 

 

OpenCL 2.x added a number of features that assist a Data Flow 
Model: 

– Pipes 
– Shared virtual memory, in general 
– Fine grained virtual memory, memory ordering rules and atomics 
– Device side kernel enqueue  

 

OpenCL 1.2 added Device Partitioning 
– Which allows a static partition of algorithmic blocks to reserved 

portions of a device. 
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But, What about ? 
• Using the OpenCL 2.0 feature set 

– We can implement the data flow model within a device, 
– In a power efficient manner. 

 

• But, what about data flow across devices? 
– Can’t use device-side enqueue, for example 
– Perhaps?  
– Power efficient?  
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