
SPIR me the details: building custom 
language support on OpenCL

Neil Henning - Technology Lead



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

Who am I?

● Five years in the industry

● Spent all of that using SPUs, GPUs, 
vector units & DSPs

● Last three years implementing 
compute for customers (OpenCL, 
RenderScript & other proprietary 
compute systems)

● Passionate about making compute 
easy for developers



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

Who are Codeplay?

● Heterogeneous Systems Experts

● Founded by Andrew Richards 
(pictured right!)

● 35 engineers based out of 
Edinburgh, Scotland

● Compilers, debuggers, test suites, & 
much more

● Mostly work with LLVM, Clang, LLDB 
& LLD

● Both off-the-shelf products & 
contractual work



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

● What is SPIR?

● Why should you use SPIR?

● What tools are available to use SPIR?

● How do you make your language support SPIR?

● What kind of tools can you make using SPIR?

● What is the future of SPIR?

Agenda



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

What is SPIR?

● Standard Portable Intermediate 
Representation

● Khronos standardization of LLVM IR 
format (LLVM 3.2)

● Vendor agnostic, platform agnostic, 
device agnostic

● Two variants, spir-unknown-
unknown & spir64-unknown-
unknown

● Allows for
○ Offline compilation
○ Online re-optimization
○ Custom language support on 

OpenCL

// OpenCL C Kernel Language
void kernel foo(

global int * a,
global int * b)

{
*a = *b;

}

// SPIR human readable representation
define spir_kernel void @foo(

i32 addrspace(1)* %a,
i32 addrspace(1)* %b)

{
%1 = load i32 addrspace(1)* %b,

align 4
store i32 %1, i32 addrspace(1)* %a,

align 4
ret void

}



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

What is SPIR?

● SPIR 1.2 is the current standardized version!

● SPIR 1.2 to match OpenCL 1.2

● SPIR inherits the restrictions of OpenCL C 1.2 Language

○ No recursion

○ Distinct address spaces for data

○ Can call any OpenCL 1.2 builtin function

○ SPIR is an inherently parallel IR



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

Why should you use SPIR?

● SPIR allows you to ship only a binary
● Means you don't have to ship 

source!
● Which means people can't just make 

off with your work
○ The caveat being that SPIR like 

any IR could still be stolen 
though!

○ SPIR does mean though that its 
harder to reproduce the 
original intention of the code

● Money, time, effort, energy & team 
morale preserved



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

Why should you use SPIR?

● SPIR can speed up OpenCL load times!

○ Compiler frontend (normally Clang) doesn't need to be involved

○ Code is just 'finalized' for the OpenCL target

○ Makes user experience better!

● Allows custom language support!

● Allows us to create tools!



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

What tools are available to use SPIR?

● Two implementors of the SPIR specification in the wild

● Intel OpenCL SDK targeting CPU, Xeon Phi & Intel Integrated GPU

● AMD's APP SDK targeting CPU & GPU

● Both OpenCL implementations can consume SPIR

● Khronos SPIR Generator built on Clang + LLVM 3.2

○ We can use this generator to turn OpenCL C kernels into SPIR

https://software.intel.com/en-us/articles/opencl-drivers
https://software.intel.com/en-us/articles/opencl-drivers
http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-tools-sdks/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-tools-sdks/amd-accelerated-parallel-processing-app-sdk
https://github.com/KhronosGroup/SPIR
https://github.com/KhronosGroup/SPIR


IWOCL’14 - SPIR me the details: building custom language support on OpenCL

What tools are available to use SPIR?

● To verify our SPIR kernels are valid, we can use Khronos SPIR Verifier

● For profiling, we can follow Anteru's Guide to AMD's GPUPerfAPI

● Or Intel's (slightly more costly) VTune tool

● Can also use Oclgrind to interpret our kernels (useful to compare against real 
devices in case you suspect foul play)

https://github.com/KhronosGroup/SPIR-Tools/tree/master/spir_verifier
https://anteru.net/2014/04/30/2396
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://github.com/jrprice/Oclgrind


IWOCL’14 - SPIR me the details: building custom language support on OpenCL

How do you make your language support SPIR?

● Having custom languages that can target SPIR is awesome

● Many use cases for why allowing custom languages matters

● To enable your language

○ You need to produce SPIR compliant IR

○ Build your tool on LLVM 3.2, mimicking the SPIR producer provided by 
Khronos

○ Use the SPIR verifier to prove your code is ok

○ Run it through Oclgrind on host to check the logic is sound

○ Only then point it at an in-the-wild implementation



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

How do you make your language support SPIR?

● But we need to be aware of the SPIR 1.2 standard's restrictions

○ Need to be able to represent address spaces (or at least default all pointers 
to the global address space)

○ Need to be able to segregate work into parallel chunks

○ No support for recursion, so need to ban that in the languages that are 
targeting SPIR

○ Could also expose OpenCL builtins to the language

● And decide whether to expose OpenCL or just hide it underneath your own 
language constructs



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

How do you make your language support SPIR?

● SPIR enabled Codeplay to lead development of the new Khronos SYCL standard

● Any language that can use LLVM 3.2 as a backend could be made to support SPIR

● At the very least Clang 3.2 allows us to target ObjC, C, & C++ onto a SPIR 
implementation

● Also possible to 'backport' future LLVM IR, to LLVM 3.2 IR, but it is not a trivial task



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

What kind of tools can you make using SPIR?

● Online and offline re-optimizers!
● Can modify SPIR libraries!
● Can modify other people's SPIR 

libraries!
● Maybe change tan -> native_tan 

because you don't care about 
precision?

● Can be done offline (buy a SPIR 
library, specialize it for your 
application, ship!)

● Or online (application developer 
links in a SPIR library, can intercept 
and re-imagine!)

// Before
define spir_func <4 x float> 
@myAwesomeFunction(

<4 x float> %in) {
%out = call <4 x float> @_Z3tanDv4_f(

<4 x float> %in)
ret <4 x float> %out

}

// After
define spir_func <4 x float> 
@myAwesomeFunction(

<4 x float> %in) {
%out = call <4 x float> 

@_Z10native_tanDv4_f(
<4 x float> %in)

ret <4 x float> %out
}



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

What kind of tools can you make using SPIR?

● Static analysis tools!
● Can take other people's libraries 

and prove features of them
○ Are they safe?
○ Do they use global data 

correctly?
○ Do they call some functions I 

don't want them too?
● Imagine a library we use has 

complicated integer arithmetic 
offsetting into a global array

● We could use static analysis on the 
SPIR library to warn us that some 
logic is not to our liking!

int myAwesomeFunction(global int * a)
{

int offset = get_global_id(0);

// now really mess up offset, in some
// hilariously bad way

// ...

// offset into global array a
// could be out of bounds!
return a[offset];

}



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

What kind of tools can you make using SPIR?

● Debuggers and profilers!
● Not every platform that will support 

SPIR has the tool support of Intel or 
AMD

● So can we build our own?
● What if we buy in a SPIR library - and 

want to debug that?
○ We can use SPIR to create our 

own debuggers (kinda)
○ At the very least we can inject 

printf calls into library code!
● We could also split up a kernel into 

multiple sub-kernels for profiling!

// Before
void kernel myAwesomeKernel(

global int * a, global int * b) {
// ... do a, b & c ...

}

//After
void kernel myAwesomeKernelA(

global int * a, global int * b,
global struct AToBState * out) {

}
void kernel myAwesomeKernelB(

global int * a, global int * b,
constant struct AToBState * in,
global struct BToCState * out) {

}
void kernel myAwesomeKernelC(

global int * a, global int * b,
constant struct BToCState * in) {

}



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

What is the future of SPIR?

● SPIR will track future version of the OpenCL specification

● OpenCL 2.0 -> SPIR 2.0

● OpenCL 2.1 -> SPIR 2.1

● This means any feature added to OpenCL, should be available in SPIR!

● Means all of the great innovation going into the OpenCL specification becomes 
available to our custom languages too!



IWOCL’14 - SPIR me the details: building custom language support on OpenCL

Wrap up

● OpenCL SPIR specification is useful, understandable & powerful

● Enables non-vendors to interact with awesome hardware in a new and excited 
way!

● We can create languages and tools and throw them at the hottest hardware 
around (providing more vendors come forward with SPIR support!)

● Please provide feedback (Khronos forums for SPIR is a good place to holler!)

● I look forward to seeing all the awesome applications and libraries that you all will 
come up with!

http://www.khronos.org/message_boards/


IWOCL’14 - SPIR me the details: building custom language support on OpenCL

Questions?

Neil Henning

Email - neil@codeplay.com

Twitter - @sheredom

mailto:neil@codeplay.com

