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ARM Introduction 

 World leading semiconductor IP 

 Founded in 1990 

 1060 processor licenses sold to more than 

350 companies 

 > 10bn ARM-based chips in 2013 

 > 50bn ARM-based chips to date 

 

 Business model 

 Designing and licensing of IP 

 Not manufacturing or selling on chips 

 

 

 Products 

 CPUs 

 Multimedia processors 

 Interconnect 

 Physical IP 



4 

 

The Evolution of Mobile GPU Compute 

2007        2009          2010               2012                2013 

OpenGL® ES 1.1 
Fixed pipeline 

OpenGL ES 2.0 
Programmable pipeline 

OpenCL™ Full Profile / RenderScript 
Portable Heterogeneous Parallel Computation 

OpenGL ES 3.1 Compute Shaders 
GPU Compute within OpenGL ES API 

 Mali-200 

 Mali-300 

 ARM® Mali™-55 GPU 

 Mali-400 MP  

 Mali-450 MP 

 Mali-T600  

 Series 

 Mali-T700  

 Series 
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Mobile Performance: New Challenges need New Solutions 

 Processing power outpacing 

improvements in battery 

performance 

 

 Processor frequency bound by 

thermal limitations 

 

 Adding duplicate cores has 

diminishing returns 

 

Vital to focus on processing 

efficiency through 

heterogeneous architectures 

x 2 

x 12 

x 13.5 
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Face Detection Case Study 

 Internal demo to explore possibilities of computer 

vision on mobile 
 

 CPU version from OpenCV library. 
 Single threaded 

 No NEON 

 

 OpenCL version written and optimised for Mali 

 

Final array of coordinates of faces 

Consolidate candidate coordinates of faces 

Detection 

Generate SAT Table 

Resize 

Equalize 

Greyscale 

Frame data (BGR) 

CPU 
 

GPU 

vectorised 
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 Significant performance benefits using 

Mali-T600 GPU Compute 

 In terms of speed 

 …and energy 

 

 CPU version could have been 

optimised more 

 Multithreaded 

 NEON 

 We would expect much better speed… 

but also even more power usage 

 And with the GPU implementation the 

CPU is free to do something else 

 

 

Face Detection Case Study 

On average, 8.7x performance improvement 

On average, 83% energy reduction 
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Face Detection Using OpenCL 
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Face Detection Relative Energy Usage 

CPU frequency 

GPU frequency 

 CPU + GPU always 

more efficient than 

CPU only 

 CPU + GPU on 

average ~5x more 

efficient 

 

 
CPU + GPU 

CPU version 
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Mali Ecosystem 
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GPU Compute on Mali 

 Full profile OpenCL conformance since late 2012 
 

 OpenCL devices: Arndale platforms, Samsung Chromebook 

 http://malideveloper.arm.com/develop-for-mali/development-platforms/insignal-arndale-octa-board/ 

 http://malideveloper.arm.com/develop-for-mali/development-platforms/samsung-arndale-board/ 

 http://malideveloper.arm.com/develop-for-mali/development-platforms/samsung-chromebook/ 

 Including full guide for running OpenCL 1.1 
 

 Other devices: 

 Google Nexus 10: first GPU-accelerated 

RenderScript device 

 Samsung Galaxy S5 
 

 All based on Mali-T6xx 
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Barriers, Local Atomics, Cached 

local memory 

Registers, PC, SP, Private stack 

Global Atomics, Cached global 

memory 

Work item 

Work Group 

ND Range 

CL Execution model on Mali-T600 (1) 
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CL Execution model on Mali-T600 (2) 

 Each work-item runs as one of the threads within a core 
 Every Mali-T600 thread has its own independent program counter 

 …which supports divergent threads from the same kernel 

 caused by conditional execution, variable length loops etc. 

 Some other GPGPU’s use “WARP” architectures 

 These share a common program counter with a group of work-items 

 This can be highly scalable… but can be slow handling divergent threads 

 T600 effectively has a Warp size of 1 

 Up to 256 threads per core 

 

 Every thread has its own registers 

 

 Every thread has its own stack pointer and private stack 

 

 Shared read-only registers are used for kernel arguments 
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CL Execution model on Mali-T600 (3) 

 A whole work-group executes on a single core  
 Mali-T600 supports up to 256 work-items per work-group 

 OpenCL barrier operations (which synchronise threads) are handled by 

the hardware 

 

 For full efficiency you need more work-groups than cores 
 To keep all of the cores fed with work 

 Most GPUs require this, so most CL applications will do this 

 

 Local and global atomic operations are available in hardware 

 

 All memory is cached 
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Inside a Core 

),,,max( 10 TexLSAAT 



23 

 

 Each ALU has a number of hardware compute blocks: 

 

 

 

 

 

 

 

 

 Theoretical peak vs Realistic peak performance 
 

 Capable of 5 FP64 flops 

Inside each ALU 

Dot product (4 x muls, 3 x adds) 7 flops 

Vector add 4 flops 

Vector mul 4 flops 

Scalar add 1 flop 

Scalar mul 1 flop 

= 17 flops / cycle / ALU / core (FP32) 
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ARM’s OpenCL Driver 
 

 Full profile OpenCL v1.1 in hardware and Mali-T600 / T700 driver 
 Backward compatibility support for OpenCL v1.0 

 Embedded profile is a subset of full profile 

 Image types supported in HW and driver 

 Atomic extensions (32 and 64-bit) 

 Hardware is OpenCL v1.2 ready (driver to follow) 

 printf implemented as an extension to v1.1 driver 
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A Note about RenderScript 

 The GPU-Compute API on Android™ 
 

 Similar architecture to OpenCL 

 Based on C99 
 

 Transparent device selection 

 The driver manages and selects devices 
 

 Transparent memory management 

 Copying managed by the driver, based on allocation flags 
 

 Higher level than OpenCL 

 Less explicit control over details 
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RenderScript Driver 

 RenderScript programs run on the GPU if they can 
 - with automatic fallback to the CPU if not 

 

 Four circumstances cause a RenderScript program to run on the CPU… 
 If a Renderscript accesses a global pointer, the script cannot run on the GPU 

 
float *array;                                              rs_allocation array; 
  
void root(const float *in, float *out, uint32_t x)         void root(const float *in, float *in, uint32_t x) 
{                                                          { 
    *out = *in + array[x % 5];                                  *out = *in + *(float *)rsGetElementAt(array, x % 5); 
}                                                          } 

 
 

 Memory allocation flags - allocations need to be flagged with USAGE_SCRIPT 
Allocation.createTyped(mRS, typeBuilder.create(),          Allocation.createTyped(mRS, typeBuilder.create(),  

         typeBuilder.create(),                                      typeBuilder.create(),  
         MipmapControl.MIPMAP_NONE,                                 MipmapControl.MIPMAP_NONE,  
         Allocation.USAGE_GRAPHICS_TEXTURE);                        Allocation.USAGE_GRAPHICS_TEXTURE | 
                                                                    Allocation.USAGE_SCRIPT);  
 

 Recursive Functions 

 Any use of direct or indirect recursion within functions is incompatible with the GPU 
 

 Debug Functions 
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Porting OpenCL code from other GPUs 

 Desktop GPUs require data to be copied to local or private memory buffers 
 Otherwise their performance suffers 

 These copy operations are expensive 

 These are sometimes done in the first part of a kernel, followed by a synchronisation barrier 

instruction, before the actual processing begins in the second half 

 The barrier instruction is also expensive 

 

 When running on Mali just use global memory instead 
 Thus the copy operations can be removed 

 And also any barrier instructions that wait for the copy to finish 

 Query the device flag CL_DEVICE_HOST_UNIFIED_MEMORY if you want to write performance portable 

code for Mali and desktop PC’s 

 The application can then switch whether or not it performs copying 

to local memory 
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Use Vectors 

 Mali-T600 and T700 series GPUs have a vector capable GPU 

 

 Mali prefers explicit vector functions 

 

 clGetDeviceInfo 
 CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR 

 CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT 

 CL_DEVICE_NATIVE_VECTOR_WIDTH_INT 

 CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG 

 CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT 

 CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE 

 CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF 
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Hello OpenCL 

for (int i = 0; i < arraySize; i++) 
{ 
    output[i] = 
              inputA[i] + inputB[i]; 
} 

 

__kernel void kernel_name(__global int* inputA, 
                          __global int* inputB, 
                          __global int* output) 
{ 
    int  i = get_global_id(0); 
    output[i] = inputA[i] + inputB[i]; 
} 
 
clEnqueueNDRangeKernel(..., kernel, ..., arraySize, ...) 
 

i, inputA, inputB 

i++ 

inputA, inputB 

...... 0 1 2 3 
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Hello OpenCL Vectors 

inputA, inputB 

0 4 8 12 

4 5 6 7 

i, inputA, inputB 

i++ 

for (int i = 0; i < arraySize; i++) 
{ 
    output[i] = 
              inputA[i] + inputB[i]; 
} 

 

__kernel void kernel_name(__global int* inputA, 
                          __global int* inputB, 
                          __global int* output) 
{ 
    int  i = get_global_id(0); 
    int4 a = vload4(i, inputA); 
    int4 b = vload4(i, inputB); 
    vstore4(a + b, i, output); 
} 
 
clEnqueueNDRangeKernel(..., kernel, ..., arraySize / 4, ...) 
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Creating buffers 

 The application creates buffer objects that pass data to and from the kernels by calling the OpenCL API  

clCreateBuffer() 

 

 All CL memory buffers are allocated in global memory that is physically accessible by both CPU and GPU cores 

 However, only memory that is allocated by clCreateBuffer is mapped into both the CPU and GPU 

virtual memory spaces 

 Memory allocated using malloc(), etc, is only mapped onto the CPU  

 

 So calling clCreateBuffer() with CL_MEM_USE_HOST_PTR and passing in a user created buffer requires 

the driver to create a new buffer and copy the data (identical to CL_MEM_COPY_HOST_PTR) 

 This copy reduces performance 

 

 So where possible always use CL_MEM_ALLOC_HOST_PTR 

 This allocates memory that both CPU and GPU can use without a copy 
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Host data pointers 

Global 

Memory
Buffer created 

by malloc()

CPU

(Host)

GPU

(Compute 

Device)

Buffers created by user (malloc) are not 

mapped into the GPU memory space 

Global 

Memory
Buffer created 

by malloc()

CPU

(Host)

Buffer created by 

clCreateBuffer()

GPU

(Compute 

Device)

COPY

clCreateBuffer(CL_MEM_USE_HOST_PTR) 
creates a new buffer and copies the data over 

(but the copy operations are expensive) 
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Host data pointers 

Global 

Memory

CPU

(Host)

Buffer created by 

clCreateBuffer()

GPU

(Compute 

Device)

clCreateBuffer(CL_MEM_ALLOC_HOST_PTR) 
creates a buffer visible by both GPU and CPU 

 Where possible don’t use CL_MEM_USE_HOST_PTR 
 Create buffers at the start of your application 

 Use CL_MEM_ALLOC_HOST_PTR instead of malloc()  

 Then you can use the buffer on both CPU host and GPU 
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Run Time 

 Where your kernel has no preference for work-group size, for 

maximum performance... 
 

 either use the compiler recommended work-group size... 

 
clGetKernelWorkgroupInfo(kernel, dev, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t)... ); 

 

 or use a large multiple of 4 

 

 You can pass NULL, but performance might not be optimal 

 

 If you want your kernel to access host memory 
 use mapping operations in place of read and write operations 

 mapping operations do not require copies so are faster and use less memory  
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Compiler 

 Run-time compilation isn’t free! 
 

 Compile each kernel only once if possible 
 If your kernel source is fixed, then compile the kernel during your 

application’s initialisation 

 If your application has an installation phase then cache the binary on a storage device for the 

application’s next invocation 

 Keep the resultant binary ready for when you want to run the kernel 

 

  clBuildProgram only partially builds the source code 
 If the kernels in use are known at initialization time, then also call 

clCreateKernel for each kernel to initiate the finalizing compile 

 Creating the same kernels in the future will then be faster because the finalized binary is used 
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BIFLs 

 Where possible use the built-in functions as the commonly occurring ones 

compile to fast hardware instructions 
 Many will target vector versions of the instructions where available 

 

 Using “half” or “native” versions of built-in functions 
 e.g. half_sin(x) 

     Specification mandates a minimum of 10-bits of accuracy 

 e.g. native_sin(x) 

      Accuracy and input range implementation defined 
 

 Not always an advantage on Mali-T600 / T700… for some functions the 

precise versions are just as fast 
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Arithmetic 

 Mali-T600 / T700 has a register and ALU width of 128-bits 

 Avoid writing kernels that operate on single bytes or scalar values 

 Write kernels that work on vectors of at least 128-bits. 

 Smaller data types are quicker 

  you can fit eight shorts into 128-bits compared to four integers 
 

 Integers and floating point are supported equally quickly 

 Don’t be afraid to use the data type best suited to your algorithm 
 

 Mali-T600 / T700 can natively 

support all CL data types 
 

 VLIW: Several operations 

per instruction word 

 Some operations are free 

 

 

 

 

 

 

128 bit 

INT64

INT32 INT32

INT64

INT32 INT32

INT16

I8 I8 I8 I8 I8 I8 I8 I8 I8 I8 I8 I8 I8 I8 I8 I8

FP64

FP32

FP16 FP16

FP32

FP16 FP16

FP64

FP32

FP16 FP16

FP32

FP16 FP16

INT16 INT16 INT16 INT16 INT16 INT16 INT16

  16 x 8-bit chars (char16) 
  2 x 64-bit integers (long2) 
  4 x 32-bit floats (float4) 
  2 x 64-bit floats (double2) 
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Register operations 

FP32 FP32 FP32 FP32 

FP32 FP32 FP32 FP32 

v1 

v2 

FP32 FP32 FP32 FP32 

FP32 FP32 FP32 FP32 

v1 

v1 

FP32 FP32 FP32 FP32 v2 

+ 

 All operations can read or write any element or elements 
within a register 

• e.g.        float4 v1, v2; 
       ...  
       v2.y = v1.x 

 All operations can swizzle the elements in their 
input registers 
 

• e.g.        float4 v1, v2; 
       ... 
       v2 = v1 + v1.wxzy 

 These operations are mostly free, 
as are various data type expansion 
and shrinking operations 

• e.g.    char -> short 
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Images 

 Image data types are supported in hardware so 

use them! 
 Supports coordinate clipping, border colours, format conversion, etc 

 Bi-linear pixel read only takes a cycle 

 Happens in the texture pipeline – leaving ALU and L/S pipes free 

 If you don’t use it the texture unit turns off to save power 

 Image stores won’t use the texture unit 

 go through the L/S pipe instead 

 

 However buffers of integer arrays can be even faster still: 
 If you don’t read off the edge of the image, and you use integer coordinates, and you don’t need format 

conversion then… 

 You can read and operate on 16 x 8-bit greyscale pixels at once 

 Or 4 x RGBA8888 pixels at once 
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Load/Store Pipeline 

 The L1 and L2 caches are not as large as on desktop systems… 
 and there are a great many threads 

 If you do a load in one instruction, by the next instruction (in the same thread) 

the datacould possibly have been evicted 

 So pull as much data into registers in a single instruction as you can 

 One instruction is always better than using several instructions! 

 And a 16-byte load or store will typically take a single cycle (assuming no 

cache misses) 
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Miscellaneous 

 Process large data sets! 
 OpenCL setup overhead can limit the GPU over CPU benefit with 

smaller data sets 
 

 Feed the beast! 
 The ALU’s work at their most efficient when running lots of compute 

 Don’t be afraid to use a high density of vector calculations in your kernels 

 

 Avoid writing kernels that use a large numbers of variables 
 Reduces the available registers 

 and therefore the maximum  workgroup size reduces 

 Sometimes better to re-compute a value than store in a variable 

 

 Avoid prime number work size dimensions 
 Cannot select an efficient workgroup size with a prime number of work items 

 Ideally workgroup size should be a multiple of 4 
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Hardware Counters 

 Counters per core 

 Active Cycles 

 Pipe activity 

 L1 cache 
 

 Counters per Core Group 

 L2 caches 
 

 Counters for the GPU 

 Active cycles  
 

 Accessed through Streamline™ 

 Timeline of all hardware counters, and more 

 Explore the execution of the full application 

 Zoom in on details 
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Streamline 
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Memories 

 Only one programmer controlled memory 

 Many transparent caches 
 

 Memory copying takes time 

 It can easily dominate over kernel execution time 
 

 Use appropriate memory allocation schemes 
 

 Avoid synchronization points 

 Cache maintenance has a cost as well 
 

 Streamline to the rescue 

 Visualize when kernels are executed 

 Many features not covered here 
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Hiding Pipeline Latency 

 Needs enough threads 

 Limited by register usage 
 

 When there are issues 

 Few instructions issued per cycle 

 Spilling of values to memory 
 

 Symptoms 

 Low Max Local Workgroup Size in OpenCL 

 Few instructions issued per cycle in limiting pipe 
 

 Remedy 

 Smaller types  More values per register 

 Splitting kernels 
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Pipeline Utilization 

 Prefer vector operations 

 More components per operation 

 

 Prefer small types 

 More components in 128 bits 

 

 Balance work between the pipes 

 Do less – with the pipe that limits performance 

),,,max( 10 TexLSAAT 
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Finding the Bottlenecks 

 Host application or Kernel execution 

 Avoid memory copying 

 Avoid cache flushes 

 

 Which pipe is important? 

 Operations in other pipes incur little or no runtime cost 

 

 Saving operations or saving registers 

 How much register pressure can we handle, and still hide the latencies? 

 

 How well are we using the caches 

 Are instructions spinning around the LS pipe waiting for data? 
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OpenCL Tools and Support 

 ARM OpenCL SDK available for download at malideveloper.com 
 Several OpenCL samples and benchmarks 

 

 Debugging 

 Notoriously difficult to do with parallel programming 

 Serial programming paradigms don’t apply 

 DS-5 Streamline compatible with OpenCL 

 Raw instrumentation output also available 

 Mali Graphics Debugger 

 Logs OpenGL ES and OpenCL API calls 

 Download from malideveloper.com 

 OpenCL  v1.2 printf  function implemented as an extension in v1.1 
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The Limiting Pipe 

 Three hardware counters 

 Cycles active (#C) 

 Number of A instructions (#A) 

 Number of LS instructions (#LS) 
 

 The goal 

 Similar values for #A and #LS  Both pipes used 

 Max(#A, #LS) similar to #C  Limiting pipe used every cycle 
 

 Example: 

 #LS / #A = 5 

 #LS / #A = 1, #C up by < 10% 

 

 

yxay 

yxaxaxay  05.0...05.005.0
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Cache Utilization 

 The Load/Store pipe hides latency 

 Many threads active 
 

 Not always successful 

 Insufficient parallelism 

 Bad cache utilization 

 Failing threads will be reissued 
 

 Reissue is a sign of cache-misses 

 Instruction words issued 

 Instruction words completed 
 

 Example 

 Inter-thread stride for memory accesses 
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Execution Order 

 Kernel saxpy 

 Load from x 

 Load from y 

 Compute 

 Store to y 
 

 Execution order 

 Threads 1 through N load from x 

 Threads 1 through N load from y 

 Threads 1 through N compute 

 Threads 1 through N store to y 
 

 How many bytes should we load per thread? 

yxay 
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A Single Instruction Word 

 We should have one load instruction word 

 The next bytes will be picked up by the next thread 
 

 Loading less is bad 

 Does not utilize the SIMD operations 
 

 Loading more is bad 

 The next bytes will be loaded after all other threads have loaded their first 
 

 Saxpy with different strides 

 128 bits: 4.5 issues per instruction 

 256 bits: 5.5 issues per instruction 

 64 bytes: 9.3 issues per instruction 
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Know your bottleneck 

 Use vector operations 
 

 If you are bandwidth-limited, merge kernels 

 Avoid reloading data 
 

 If you are register-limited, split kernels 

 Easier for the compiler to do a good job 
 

 If you are Load-Store-limited, do less load-store 

 Compute complex expressions instead of using lookup-tables 
 

 If you are Arithmetic-limited, do less arithmetic 

 Tabulate functions 

 Use polynomial approximations instead of special functions 
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Synchronization between threads 

 Two options in OpenCL 

 Barriers inside a work-group 

 Atomics between work-groups 
 

 We like atomics to ensure data consistency 

 But preferably on the same core 
 

 Barriers can be useful to improve cache utilization 

 Limit divergence between threads 

 Keeping jobs small serves the same purpose 
 

 We see examples of large jobs with many barriers 

 We often prefer small jobs with dependencies 
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Vectorize your operations 

 More components per operation 

 For basic arithmetic and memory operations 

 Square roots, trigonometry and atomics are scalar 
 

 Fewer registers used 

 The compiler will only do part of the job 
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OpenCL Laplace Case Study 

 Laplace filters are typically used in image processing 
 … often used for edge detection or image sharpening 

 and can be part of a computer vision filter chain 
 

 This case study will go through a number of stages… 
 demonstrating a variety of optimization techniques 

 and showing the change in performance at each stage 
 

 Our example will process and output 24-bit images 
 and we’ll measure performance across a range of image sizes 

 

 But first, a couple of images samples showing the effect 

of the filter we are using… 
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OpenCL Laplace Case Study 

Original 
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OpenCL Laplace Case Study 

Filtered 
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OpenCL Laplace Case Study 

Original 
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OpenCL Laplace Case Study 

Filtered 
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OpenCL Laplace Case Study 
 

 

-1 -1 -1 
 

-1  9 -1 
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OpenCL Laplace Case Study 

… … 

width 

h
e
ig

h
t 

image “stride” = width x 3 
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OpenCL Laplace Case Study 
 

 
#define MAX(a,b) ((a)>(b)?(a):(b)) 
#define MIN(a,b) ((a)<(b)?(a):(b)) 
     
__kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int width, int height) 
{ 
    int y         = get_global_id(0); 
    int x         = get_global_id(1); 
    int w         = width; 
    int h         = height; 
    int ind       = 0; 
    int xBoundary = w - 2; 
    int yBoundary = h - 2; 
 
    if (x >= xBoundary || y >= yBoundary) 
    { 
        ind           = 3 * (x + w * y); 
        pdst[ind]     = psrc[ind]; 
        pdst[ind + 1] = psrc[ind + 1]; 
        pdst[ind + 2] = psrc[ind + 2]; 
        return; 
    } 
 
    int bColor = 0, gColor = 0, rColor = 0; 
    ind        = 3 * (x + w * y); 
 
    bColor = bColor - psrc[ind] - psrc[ind+3] - psrc[ind+6] - psrc[ind+3*w] + psrc[ind+3*(1+w)] * 9 – 
             psrc[ind+3*(2+w)]- psrc[ind+3*2*w]- psrc[ind+3*(1+2*w)]- psrc[ind+3*(2+2*w)]; 
    gColor = gColor - psrc[ind+1] - psrc[ind+4] - psrc[ind+7] - psrc[ind+3*w+1] + psrc[ind+3*(1+w)+1] * 9 – 
             psrc[ind+3*(2+w)+1]- psrc[ind+3*2*w+1]- psrc[ind+3*(1+2*w)+1]- psrc[ind+3*(2+2*w)+1]; 
    rColor = rColor - psrc[ind+2] - psrc[ind+5] - psrc[ind+8] - psrc[ind+3*w+2] + psrc[ind+3*(1+w)+2] * 9 –  
             psrc[ind+3*(2+w)+2]- psrc[ind+3*2*w+2]- psrc[ind+3*(1+2*w)+2]- psrc[ind+3*(2+2*w)+2]; 
 
    unsigned char blue  = (unsigned char)MAX(MIN(bColor, 255), 0); 
    unsigned char green = (unsigned char)MAX(MIN(gColor, 255), 0); 
    unsigned char red   = (unsigned char)MAX(MIN(rColor, 255), 0); 
    ind           = 3 * (x + 1 + w * (y + 1)); 
    pdst[ind]     = blue; 
    pdst[ind + 1] = green; 
    pdst[ind + 2] = red; 
} 
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OpenCL Laplace Case Study 
 

 
#define MAX(a,b) ((a)>(b)?(a):(b)) 
#define MIN(a,b) ((a)<(b)?(a):(b)) 
     
__kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int width, int height) 
{ 
    int y         = get_global_id(0); 
    int x         = get_global_id(1); 
    int w         = width; 
    int h         = height; 
    int ind       = 0; 
    int xBoundary = w - 2; 
    int yBoundary = h - 2; 
 
    if (x >= xBoundary || y >= yBoundary) 
    { 
        ind           = 3 * (x + w * y); 
        pdst[ind]     = psrc[ind]; 
        pdst[ind + 1] = psrc[ind + 1]; 
        pdst[ind + 2] = psrc[ind + 2]; 
        return; 
    } 
 
    int bColor = 0, gColor = 0, rColor = 0; 
    ind        = 3 * (x + w * y); 
 
    bColor = bColor - psrc[ind] - psrc[ind+3] - psrc[ind+6] - psrc[ind+3*w] + psrc[ind+3*(1+w)] * 9 – 
             psrc[ind+3*(2+w)]- psrc[ind+3*2*w]- psrc[ind+3*(1+2*w)]- psrc[ind+3*(2+2*w)]; 
    gColor = gColor - psrc[ind+1] - psrc[ind+4] - psrc[ind+7] - psrc[ind+3*w+1] + psrc[ind+3*(1+w)+1] * 9 – 
             psrc[ind+3*(2+w)+1]- psrc[ind+3*2*w+1]- psrc[ind+3*(1+2*w)+1]- psrc[ind+3*(2+2*w)+1]; 
    rColor = rColor - psrc[ind+2] - psrc[ind+5] - psrc[ind+8] - psrc[ind+3*w+2] + psrc[ind+3*(1+w)+2] * 9 –  
             psrc[ind+3*(2+w)+2]- psrc[ind+3*2*w+2]- psrc[ind+3*(1+2*w)+2]- psrc[ind+3*(2+2*w)+2]; 
 
    unsigned char blue  = (unsigned char)MAX(MIN(bColor, 255), 0); 
    unsigned char green = (unsigned char)MAX(MIN(gColor, 255), 0); 
    unsigned char red   = (unsigned char)MAX(MIN(rColor, 255), 0); 
    ind           = 3 * (x + 1 + w * (y + 1)); 
    pdst[ind]     = blue; 
    pdst[ind + 1] = green; 
    pdst[ind + 2] = red; 
} 

 

 

Destination buffer    Source buffer    Image width    Image height 
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#define MAX(a,b) ((a)>(b)?(a):(b)) 
#define MIN(a,b) ((a)<(b)?(a):(b)) 
     
__kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int width, int height) 
{ 
    int y         = get_global_id(0); 
    int x         = get_global_id(1); 
    int w         = width; 
    int h         = height; 
    int ind       = 0; 
    int xBoundary = w - 2; 
    int yBoundary = h - 2; 
 
    if (x >= xBoundary || y >= yBoundary) 
    { 
        ind           = 3 * (x + w * y); 
        pdst[ind]     = psrc[ind]; 
        pdst[ind + 1] = psrc[ind + 1]; 
        pdst[ind + 2] = psrc[ind + 2]; 
        return; 
    } 
 
    int bColor = 0, gColor = 0, rColor = 0; 
    ind        = 3 * (x + w * y); 
 
    bColor = bColor - psrc[ind] - psrc[ind+3] - psrc[ind+6] - psrc[ind+3*w] + psrc[ind+3*(1+w)] * 9 – 
             psrc[ind+3*(2+w)]- psrc[ind+3*2*w]- psrc[ind+3*(1+2*w)]- psrc[ind+3*(2+2*w)]; 
    gColor = gColor - psrc[ind+1] - psrc[ind+4] - psrc[ind+7] - psrc[ind+3*w+1] + psrc[ind+3*(1+w)+1] * 9 – 
             psrc[ind+3*(2+w)+1]- psrc[ind+3*2*w+1]- psrc[ind+3*(1+2*w)+1]- psrc[ind+3*(2+2*w)+1]; 
    rColor = rColor - psrc[ind+2] - psrc[ind+5] - psrc[ind+8] - psrc[ind+3*w+2] + psrc[ind+3*(1+w)+2] * 9 –  
             psrc[ind+3*(2+w)+2]- psrc[ind+3*2*w+2]- psrc[ind+3*(1+2*w)+2]- psrc[ind+3*(2+2*w)+2]; 
 
    unsigned char blue  = (unsigned char)MAX(MIN(bColor, 255), 0); 
    unsigned char green = (unsigned char)MAX(MIN(gColor, 255), 0); 
    unsigned char red   = (unsigned char)MAX(MIN(rColor, 255), 0); 
    ind           = 3 * (x + 1 + w * (y + 1)); 
    pdst[ind]     = blue; 
    pdst[ind + 1] = green; 
    pdst[ind + 2] = red; 
} 

 

 

OpenCL Laplace Case Study 
 

 

Boundary checking… ideally we don’t want 

to calculate for values at the right and 

bottom edges. 

(But this might not be the best place to 

handle this.) 
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#define MAX(a,b) ((a)>(b)?(a):(b)) 
#define MIN(a,b) ((a)<(b)?(a):(b)) 
     
__kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int width, int height) 
{ 
    int y         = get_global_id(0); 
    int x         = get_global_id(1); 
    int w         = width; 
    int h         = height; 
    int ind       = 0; 
    int xBoundary = w - 2; 
    int yBoundary = h - 2; 
 
    if (x >= xBoundary || y >= yBoundary) 
    { 
        ind           = 3 * (x + w * y); 
        pdst[ind]     = psrc[ind]; 
        pdst[ind + 1] = psrc[ind + 1]; 
        pdst[ind + 2] = psrc[ind + 2]; 
        return; 
    } 
 
    int bColor = 0, gColor = 0, rColor = 0; 
    ind        = 3 * (x + w * y); 
 
    bColor = bColor - psrc[ind] - psrc[ind+3] - psrc[ind+6] - psrc[ind+3*w] + psrc[ind+3*(1+w)] * 9 – 
             psrc[ind+3*(2+w)]- psrc[ind+3*2*w]- psrc[ind+3*(1+2*w)]- psrc[ind+3*(2+2*w)]; 
    gColor = gColor - psrc[ind+1] - psrc[ind+4] - psrc[ind+7] - psrc[ind+3*w+1] + psrc[ind+3*(1+w)+1] * 9 – 
             psrc[ind+3*(2+w)+1]- psrc[ind+3*2*w+1]- psrc[ind+3*(1+2*w)+1]- psrc[ind+3*(2+2*w)+1]; 
    rColor = rColor - psrc[ind+2] - psrc[ind+5] - psrc[ind+8] - psrc[ind+3*w+2] + psrc[ind+3*(1+w)+2] * 9 –  
             psrc[ind+3*(2+w)+2]- psrc[ind+3*2*w+2]- psrc[ind+3*(1+2*w)+2]- psrc[ind+3*(2+2*w)+2]; 
 
    unsigned char blue  = (unsigned char)MAX(MIN(bColor, 255), 0); 
    unsigned char green = (unsigned char)MAX(MIN(gColor, 255), 0); 
    unsigned char red   = (unsigned char)MAX(MIN(rColor, 255), 0); 
    ind           = 3 * (x + 1 + w * (y + 1)); 
    pdst[ind]     = blue; 
    pdst[ind + 1] = green; 
    pdst[ind + 2] = red; 
} 

 

 

OpenCL Laplace Case Study 
 

 

The main calculation… we need to perform 

this for the red, green and blue color 

components… 
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#define MAX(a,b) ((a)>(b)?(a):(b)) 
#define MIN(a,b) ((a)<(b)?(a):(b)) 
     
__kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int width, int height) 
{ 
    int y         = get_global_id(0); 
    int x         = get_global_id(1); 
    int w         = width; 
    int h         = height; 
    int ind       = 0; 
    int xBoundary = w - 2; 
    int yBoundary = h - 2; 
 
    if (x >= xBoundary || y >= yBoundary) 
    { 
        ind           = 3 * (x + w * y); 
        pdst[ind]     = psrc[ind]; 
        pdst[ind + 1] = psrc[ind + 1]; 
        pdst[ind + 2] = psrc[ind + 2]; 
        return; 
    } 
 
    int bColor = 0, gColor = 0, rColor = 0; 
    ind        = 3 * (x + w * y); 
 
    bColor = bColor - psrc[ind] - psrc[ind+3] - psrc[ind+6] - psrc[ind+3*w] + psrc[ind+3*(1+w)] * 9 – 
             psrc[ind+3*(2+w)]- psrc[ind+3*2*w]- psrc[ind+3*(1+2*w)]- psrc[ind+3*(2+2*w)]; 
    gColor = gColor - psrc[ind+1] - psrc[ind+4] - psrc[ind+7] - psrc[ind+3*w+1] + psrc[ind+3*(1+w)+1] * 9 – 
             psrc[ind+3*(2+w)+1]- psrc[ind+3*2*w+1]- psrc[ind+3*(1+2*w)+1]- psrc[ind+3*(2+2*w)+1]; 
    rColor = rColor - psrc[ind+2] - psrc[ind+5] - psrc[ind+8] - psrc[ind+3*w+2] + psrc[ind+3*(1+w)+2] * 9 –  
             psrc[ind+3*(2+w)+2]- psrc[ind+3*2*w+2]- psrc[ind+3*(1+2*w)+2]- psrc[ind+3*(2+2*w)+2]; 
 
    unsigned char blue  = (unsigned char)MAX(MIN(bColor, 255), 0); 
    unsigned char green = (unsigned char)MAX(MIN(gColor, 255), 0); 
    unsigned char red   = (unsigned char)MAX(MIN(rColor, 255), 0); 
    ind           = 3 * (x + 1 + w * (y + 1)); 
    pdst[ind]     = blue; 
    pdst[ind + 1] = green; 
    pdst[ind + 2] = red; 
} 

 

 

OpenCL Laplace Case Study 
 

 

Finally we clamp the results to make 

sure they lie between 0 and 255… and 

then write out to the destination… 
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OpenCL Laplace Case Study 

Image Pixels Time (s) 

768 x 432 331,776 0.0107 

2560 x 1600 4,096,000 0.0850 

2048 x 2048 4,194,304 0.0865 

5760 x 3240 18,662,400 0.382 

7680 x 4320 33,177,600 0.680 

CPU 

0.0229 
x0.5 

0.125 
x0.7 

0.128 
x0.7 

0.572 
x0.7 

1.02 
x0.7 

Mali T604 @ 533MHz Single A15 @ 1.7GHz 

 Results 
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OpenCL Laplace Case Study 

 
psg@psg-mali:~/laplace# mali_clcc –v laplace.cl 

 

Entry point: __llvm2lir_entry_math 

8 work registers used, 8 uniform registers used 

 

Pipelines:                                A / L / T / Overall 

Number of instruction words emitted:     54 +31 + 0 = 85 

Number of cycles for shortest code path:  3 / 4 / 0 =  4 (L bound) 

Number of cycles for longest code path:  25.5 /28 / 0 = 28 (L bound) 

Note: The cycle counts do not include possible stalls due to cache misses. 

 

Use the offline compiler mali_clcc to analyse the kernel 
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OpenCL Laplace Case Study: Optimisation 1 

 Replace the data fetch (= psrc[index]) with vloadN 
 Each vload16 can load 5 pixels at a time (at 3 bytes-per-pixel) 

 This load should complete in a single cycle 
 

 Perform the Laplace calculation as a vector calculation 
 Then Mali works on all 5 pixels at once 

 

 Replace the data store (pdst[index] = ) with vstoreN 
 Allows us to write out multiple values at a time 

 Need to be careful to only output 15 bytes (3 pixels) 
 

 As we’ll be running 5 times fewer work items, we’ll need to update the 

globalWorkSize values… 
 

globalWorkSize[0] = image_height; 
globalWorkSize[1] = (image_width / 5); 
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From processing 1 pixel… 

9 bytes 

9 bytes 

9 bytes 

…to processing 5 pixels... 

21 bytes 

21 bytes 

21 bytes 

27 bytes total 

63 bytes total 

But we would like to load this data in a 

way that allows us to efficiently calculate 

the results in a single vector calculation… 

OpenCL Laplace Case Study 
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p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

3 x overlapping, 16-byte reads from row1 (vload16)… 

row 1 

And the same for rows 2 and 3… 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

row 2 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

row 3 

OpenCL Laplace Case Study 
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p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

row 2 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

row 3 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

row 1 

The five pixels can then be computed as follows… 

OpenCL Laplace Case Study 
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OpenCL Laplace Case Study 
 

     
__kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int width, int height) 
{ 
    int y         = get_global_id(0); 
    int x         = get_global_id(1); 
    int w         = width; 
    int h         = height; 
    int ind       = x * 5 * 3 + w * y * 3; 
 
    uchar16 row1a_    = vload16(0, psrc + ind); 
    uchar16 row1b_    = vload16(0, psrc + ind + 3); 
    uchar16 row1c_    = vload16(0, psrc + ind + 6); 
    uchar16 row2a_    = vload16(0, psrc + ind + (w * 3)); 
    uchar16 row2b_    = vload16(0, psrc + ind + (w * 3) + 3); 
    uchar16 row2c_    = vload16(0, psrc + ind + (w * 3) + 6); 
    uchar16 row3a_    = vload16(0, psrc + ind + (w * 6)); 
    uchar16 row3b_    = vload16(0, psrc + ind + (w * 6) + 3); 
    uchar16 row3c_    = vload16(0, psrc + ind + (w * 6) + 6); 
 
    int16 row1a       = convert_int16(row1a_); 
    int16 row1b       = convert_int16(row1b_); 
    int16 row1c       = convert_int16(row1c_); 
    int16 row2a       = convert_int16(row2a_); 
    int16 row2b       = convert_int16(row2b_); 
    int16 row2c       = convert_int16(row2c_); 
    int16 row3a       = convert_int16(row3a_); 
    int16 row3b       = convert_int16(row3b_); 
    int16 row3c       = convert_int16(row3c_); 
 
    int16 res         = (int)0 – row1a – row1b – row1c – row2a – row2b * (int)9 – row2c – row3a – row3b – row3c; 
    res               = clamp(res, (int16)0, (int16)255); 
    uchar16 res_row   = convert_uchar16(res); 
 
    vstore8(res_row.s01234567, 0, pdst + ind); 
    vstore4(res_row.s89ab,     0, pdst + ind + 8); 
    vstore2(res_row.scd,       0, pdst + ind + 12); 
    pdst[ind + 14]    = res_row.se; 
} 

 

 

Parameter 3 now refers to 

the width of the image / 5. 

3 overlapping 16-byte reads 

for each of the 3 rows 

(5 pixels-worth in each read)  

Convert each 16-byte uchar 

vector to int16 vectors 
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__kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int width, int height) 
{ 
    int y         = get_global_id(0); 
    int x         = get_global_id(1); 
    int w         = width; 
    int h         = height; 
    int ind       = x * 5 * 3 + w * y * 3; 
 
    uchar16 row1a_    = vload16(0, psrc + ind); 
    uchar16 row1b_    = vload16(0, psrc + ind + 3); 
    uchar16 row1c_    = vload16(0, psrc + ind + 6); 
    uchar16 row2a_    = vload16(0, psrc + ind + (w * 3)); 
    uchar16 row2b_    = vload16(0, psrc + ind + (w * 3) + 3); 
    uchar16 row2c_    = vload16(0, psrc + ind + (w * 3) + 6); 
    uchar16 row3a_    = vload16(0, psrc + ind + (w * 6)); 
    uchar16 row3b_    = vload16(0, psrc + ind + (w * 6) + 3); 
    uchar16 row3c_    = vload16(0, psrc + ind + (w * 6) + 6); 
 
    int16 row1a       = convert_int16(row1a_); 
    int16 row1b       = convert_int16(row1b_); 
    int16 row1c       = convert_int16(row1c_); 
    int16 row2a       = convert_int16(row2a_); 
    int16 row2b       = convert_int16(row2b_); 
    int16 row2c       = convert_int16(row2c_); 
    int16 row3a       = convert_int16(row3a_); 
    int16 row3b       = convert_int16(row3b_); 
    int16 row3c       = convert_int16(row3c_); 
 
    int16 res         = (int)0 – row1a – row1b – row1c – row2a – row2b * (int)9 – row2c – row3a – row3b – row3c; 
    res               = clamp(res, (int16)0, (int16)255); 
    uchar16 res_row   = convert_uchar16(res); 
 
    vstore8(res_row.s01234567, 0, pdst + ind); 
    vstore4(res_row.s89ab,     0, pdst + ind + 8); 
    vstore2(res_row.scd,       0, pdst + ind + 12); 
    pdst[ind + 14]    = res_row.se; 
} 

 

 

OpenCL Laplace Case Study 
 

 

Perform the Laplace calculation 

on all five pixels at once 

Then clamp the values between 

0 and 255 (using the BIFL!) 

Convert back to uchar16… 

and then write 5 pixels to 

destination buffer 
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OpenCL Laplace Case Study 

Image Pixels Original 

768 x 432 331,776 0.0107 

2560 x 1600 4,096,000 0.0850 

2048 x 2048 4,194,304 0.0865 

5760 x 3240 18,662,400 0.382 

7680 x 4320 33,177,600 0.680 

Work registers: 8 

ALU cycles: 25.5 

L/S cycles: 28 

Opt 1 

x1.4 

x4.5 

x1.7 

x6.0 

x6.2 

8+ 

22.5 

13 

 Vectorization Results 
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OpenCL Laplace Case Study: Optimisation 2 

 We can reduce the number of loads 

 by synthesizing the middle vector row from the left and right rows… 

row 1b            row1(p2, p3, p4, p5) + row2(p6) 

becomes… 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 
row  1a 

row  1b 

row  1c 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 
row  1a 

row  1c 



85 

 

OpenCL Laplace Case Study: Optimisation 2 

 We can reduce the number of loads 

 by synthesizing the middle vector row from the left and right rows… 

 
uchar16 row1a_    = vload16(0, psrc + ind); 
uchar16 row1b_    = vload16(0, psrc + ind + 3); 
uchar16 row1c_    = vload16(0, psrc + ind + 6); 
uchar16 row2a_    = vload16(0, psrc + ind + (w * 3)); 
uchar16 row2b_    = vload16(0, psrc + ind + (w * 3) + 3); 
uchar16 row2c_    = vload16(0, psrc + ind + (w * 3) + 6); 
uchar16 row3a_    = vload16(0, psrc + ind + (w * 6)); 
uchar16 row3b_    = vload16(0, psrc + ind + (w * 6) + 3); 
uchar16 row3c_    = vload16(0, psrc + ind + (w * 6) + 6); 
 
becomes… 
 
uchar16 row1a_    = vload16(0, psrc + ind); 
uchar16 row1c_    = vload16(0, psrc + ind + 6); 
uchar16 row1b_    = (uchar16)(row1a_.s3456789a, row1c_.s56789abc); 
uchar16 row2a_    = vload16(0, psrc + ind + (w * 3)); 
uchar16 row2c_    = vload16(0, psrc + ind + (w * 3) + 6); 
uchar16 row2b_    = (uchar16)(row2a_.s3456789a, row2c_.s56789abc); 
uchar16 row3a_    = vload16(0, psrc + ind + (w * 6)); 
uchar16 row3c_    = vload16(0, psrc + ind + (w * 6) + 6); 
uchar16 row3b_    = (uchar16)(row3a_.s3456789a, row3c_.s56789abc); 
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OpenCL Laplace Case Study 

Image Pixels Original Opt 1 

768 x 432 331,776 0.0107 x1.4 

2560 x 1600 4,096,000 0.0850 x4.5 

2048 x 2048 4,194,304 0.0865 x1.7 

5760 x 3240 18,662,400 0.382 x6.0 

7680 x 4320 33,177,600 0.680 x6.2 

Work registers: 8 8+ 

ALU cycles: 25.5 22.5 

L/S cycles: 28 13 

Opt 2 

x1.4 

x4.5 

x2.0 

x6.0 

x6.3 

8 

24.5 

8 

 Synthesize Loads Results 
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 Use short16 instead of int16 

 smaller register use allows for a larger CL_KERNEL_WORK_GROUP_SIZE 

available for kernel execution 
  
    int16 row1a       = convert_int16(row1a_); 
    int16 row1b       = convert_int16(row1b_); 
    int16 row1c       = convert_int16(row1c_); 
    int16 row2a       = convert_int16(row2a_); 
    int16 row2b       = convert_int16(row2b_); 
    int16 row2c       = convert_int16(row2c_); 
    int16 row3a       = convert_int16(row3a_); 
    int16 row3b       = convert_int16(row3b_); 
    int16 row3c       = convert_int16(row3c_); 
 
    int16 res         = (int)0 – row1a – row1b – row1c – row2a – row2b * (int)9 – row2c – row3a – row3b – row3c; 
    res               = clamp(res, (int16)0, (int16)255); 
    uchar16 res_row   = convert_uchar16(res); 
 

   becomes… 
 

    short16 row1a     = convert_short16(row1a_); 
    short16 row1b     = convert_short16(row1b_); 
    short16 row1c     = convert_short16(row1c_); 
    short16 row2a     = convert_short16(row2a_); 
    short16 row2b     = convert_short16(row2b_); 
    short16 row2c     = convert_short16(row2c_); 
    short16 row3a     = convert_short16(row3a_); 
    short16 row3b     = convert_short16(row3b_); 
    short16 row3c     = convert_short16(row3c_); 
 
    short16 res       = (short)0 – row1a – row1b – row1c – row2a – row2b * (short)9 – row2c – row3a – row3b – row3c; 
    res               = clamp(res, (short16)0, (short16)255); 
    uchar16 res_row   = convert_uchar16(res); 

OpenCL Laplace Case Study: Optimisation 3 
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OpenCL Laplace Case Study 

Image Pixels Original Opt 1 Opt 2 

768 x 432 331,776 0.0107 x1.4 x1.4 

2560 x 1600 4,096,000 0.0850 x4.5 x4.5 

2048 x 2048 4,194,304 0.0865 x1.7 x2.0 

5760 x 3240 18,662,400 0.382 x6.0 x6.0 

7680 x 4320 33,177,600 0.680 x6.2 x6.3 

Work registers: 8 8+ 8 

ALU cycles: 25.5 22.5 24.5 

L/S cycles: 28 13 8 

Opt 3 

x1.5 

x6.2 

x1.9 

x8.5 

x9.0 

7 

13.5 

9 

 Using Short Ints Results 
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OpenCL Laplace Case Study: Optimisation 4 

 Try 4-pixels per work-item rather than 5 

 With some image sizes perhaps the driver can optimize more efficiently 

when 4 pixels are being calculated 

 
  
    __kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int width, int height) 
    { 
        int y         = get_global_id(0); 
        int x         = get_global_id(1); 
        int w         = width; 
        int h         = height; 
        int ind       = x * 5 * 3 + w * y * 3; 

 
    ... 

 

   becomes… 
 

    __kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int width, int height) 
    { 
        int y         = get_global_id(0); 
        int x         = get_global_id(1); 
        int w         = width; 
        int h         = height; 
        int ind       = x * 4 * 3 + w * y * 3; 

 
    ... 

 



90 

 

OpenCL Laplace Case Study 

 And our date write out becomes simpler… 
  
    
    ... 
 
        vstore8(res_row.s01234567, 0, pdst + ind); 
        vstore4(res_row.s89ab,     0, pdst + ind + 8); 
        vstore2(res_row.scd,       0, pdst + ind + 12); 
        pdst[ind + 14]    = res_row.se; 
 
 
 

   becomes… 
 
 

    ... 
 

        vstore8(res_row.s01234567, 0, pdst + ind); 
        vstore4(res_row.s89ab,     0, pdst + ind + 8); 
 
 
 
 
 

  …and we need to adjust the setup code to adjust the work-item count. 
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OpenCL Laplace Case Study 

Image Pixels Original Opt 1 Opt 2 Opt 3 

768 x 432 331,776 0.0107 x1.4 x1.4 x1.5 

2560 x 1600 4,096,000 0.0850 x4.5 x4.5 x6.2 

2048 x 2048 4,194,304 0.0865 x1.7 x2.0 x1.9 

5760 x 3240 18,662,400 0.382 x6.0 x6.0 x8.5 

7680 x 4320 33,177,600 0.680 x6.2 x6.3 x9.0 

Work registers: 8 8+ 8 7 

ALU cycles: 25.5 22.5 24.5 13.5 

L/S cycles: 28 13 8 9 

Opt 4 

x1.6 

x5.2 

x5.3 

x7.2 

x7.5 

6 

14 

6 

 Computing 4 Pixels Results 
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OpenCL Laplace Case Study: Optimisation 5 

 How about 8 pixels per work-item? 
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OpenCL Laplace Case Study 
 

 

__kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int w, int h) 
{ 
    const int y       = get_global_id(0); 
    const int x       = get_global_id(1) * 8; 
    int       ind     = (x + w * y) * 3; 
    short16   acc_xy; 
    short8    acc_z; 
   
    uchar16 l_0    = vload16(0, psrc + ind); 
    uchar16 r_0    = vload16(0, psrc + ind + 14); 
    short16 a_xy_0 = convert_short16((uchar16)(l_0.s0123456789abcdef)); 
    short8  a_z_0  = convert_short8((uchar8)(r_0.s23456789)); 
    short16 b_xy_0 = convert_short16((uchar16)(l_0.s3456789a, l_0.sbcde, r_0.s1234)); 
    short8  b_z_0  = convert_short8((uchar8)(r_0.s56789abc)); 
    short16 c_xy_0 = convert_short16((uchar16)(l_0.s6789abcd, r_0.s01234567)); 
    short8  c_z_0  = convert_short8((uchar8)(r_0.s89abcdef)); 
    acc_xy         = -a_xy_0 - b_xy_0 - c_xy_0; 
    acc_z          = -a_z_0  - b_z_0  - c_z_0; 
   
    uchar16 l_1    = vload16(0, psrc + ind + (w * 3)); 
    uchar16 r_1    = vload16(0, psrc + ind + (w * 3) + 14); 
    short16 a_xy_1 = convert_short16((uchar16)(l_1.s0123456789abcdef)); 
    short8  a_z_1  = convert_short8((uchar8)(r_1.s23456789)); 
    short16 b_xy_1 = convert_short16((uchar16)(l_1.s3456789a, l_0.sbcde, r_0.s1234)); 
    short8  b_z_1  = convert_short8((uchar8)(r_1.s56789abc)); 
    short16 c_xy_1 = convert_short16((uchar16)(l_1.s6789abcd, r_0.s01234567)); 
    short8  c_z_1  = convert_short8((uchar8)(r_1.s89abcdef)); 
    acc_xy         = -a_xy_1 + b_xy_1 * (short)9 - c_xy_1; 
    acc_z         += -a_z_1  + b_z_1  * (short)9 - c_z_1; 
   
    uchar16 l_2    = vload16(0, psrc + ind + (w * 6)); 
    uchar16 r_2    = vload16(0, psrc + ind + (w * 6) + 14); 
    short16 a_xy_2 = convert_short16((uchar16)(l_2.s0123456789abcdef)); 
    short8  a_z_2  = convert_short8((uchar8)(r_2.s23456789)); 
    short16 b_xy_2 = convert_short16((uchar16)(l_2.s3456789a, l_0.sbcde, r_0.s1234)); 
    short8  b_z_2  = convert_short8((uchar8)(r_2.s56789abc)); 
    short16 c_xy_2 = convert_short16((uchar16)(l_2.s6789abcd, r_0.s01234567)); 
    short8  c_z_2  = convert_short8((uchar8)(r_2.s89abcdef)); 
    acc_xy         += -a_xy_2 - b_xy_2 - c_xy_2; 
    acc_z          += -a_z_2  - b_z_2  - c_z_2; 
     
    short16 res_xy = clamp(acc_xy, (short16)0, (short16)255); 
    short8 res_z   = clamp(acc_z,  (short8)0,  (short8)255); 
   
    vstore16(convert_uchar16(res_xy), 0, pdst + ind); 
    vstore8(convert_uchar8(res_z), 0, pdst + ind + 16); 
} 
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OpenCL Laplace Case Study 

Image Pixels Original Opt 1 Opt 2 Opt 3 Opt 4 

768 x 432 331,776 0.0107 x1.4 x1.4 x1.5 x1.6 

2560 x 1600 4,096,000 0.0850 x4.5 x4.5 x6.2 x5.2 

2048 x 2048 4,194,304 0.0865 x1.7 x2.0 x1.9 x5.3 

5760 x 3240 18,662,400 0.382 x6.0 x6.0 x8.5 x7.2 

7680 x 4320 33,177,600 0.680 x6.2 x6.3 x9.0 x7.5 

Work registers: 8 8+ 8 7 6 

ALU cycles: 25.5 22.5 24.5 13.5 14 

L/S cycles: 28 13 8 9 6 

Opt 5 

x1.2 

x5.6 

x5.8 

x8.4 

x9.1 

8+ 

24 

11 

 Computing 8 Pixels:  Results 
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OpenCL Laplace Case Study: Summary 
 Original version: Scalar code 

 Optimisation 1: Vectorize 

 Process 5 pixels per work-item 

 Vector loads (vloadn) and vector stores (vstoren) 

 Much better use of the GPU ALU: Up to x6.2 performance increase 

 Optimisation 2: Synthesised loads 

 Reduce the number of loads by synthesising values 

 Performance increase: up to x6.3 over original 

 Optimisation 3: Replace int16 with short16 

 Reduces the kernel register count 

 Performance increase: up to x9.0 over original 

 Optimisation 4: Try 4 pixels per work-item rather than 5 

 Performance increase: up to x7.5 over original 

 but it depends on the image size 

 Optimisation 5: Try 8 pixels per work-item 

 Performance increase: up to x9.1 over original… but a mixed bag. 
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Agenda 

 Introduction to Mali GPUs 

 Mali-T600 / T700 Compute Overview 

 Optimal OpenCL for Mali-T600 / T700 

 OpenCL Optimization Case Studies 

 Laplace 

 SGEMM 
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 Question from a developer sent to malidevelopers@arm.com... 

 Running SGEMM on 1024x1024 matrices on a Chromebook (Dual A15, Mali-T604) 

 Takes ~3s on the CPU 

 Takes ~84s using OpenCL on the GPU 

 

 Initial analysis from ARM Developer Relations engineers… 

 Error found in the DVFS implementation of the device used 

 Working around this reduced the time to ~12s 

 Further analysis showed how susceptible SGEMM is to workgroup size 

 And some analysis showed benefits in pre-transposing matrix on the CPU 

 With some experimentation in LWS, time reduced to ~2.5s on GPU 

SGEMM: Preface 

mailto:malidevelopers@arm.com
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SGEMM: The task 

 Input:  Matrices A, B, C (assumed to be nxn square matrices) and constants alpha, beta 

 Task:   

 In terms of matrix elements:  

 Naive implementation: 
 

__kernel void sgemm(__global float *A, __global float *B, __global float *C,  

                    float alpha, float beta, int n) 

{ 

 float sum = 0.0; 

 for (int k=0; k<n; k++) { sum += A[i*n+k]*B[k*n+j]; } 

 C[i*n+j] = alpha*sum + beta*C[i*n+j];  

} 
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Transposition 

 We could transpose B before the computation,  and implement the kernel 

 

 

 

 We now have two kernels 

 One kernel for the transposition 

 One kernel for the matrix multiplication 

 Runtime is dominated by the multiplication 

 On the Midgard architecture, there generally an advantage to adding a transposition. 

 [List advantages of transposition] 
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Execution order, without transposition 

 In program order, we have a very simple access pattern 

 

 

 

 

 

 Taking the threads in a workgroup into account, it becomes slightly less simple 
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With transposition 

 In program order, we always have sequential loads from memory. 

 

 

 

 

 

 Taking the threads in a workgroup into account, we switch between different cache lines 
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Register Blocking 

 New view:  A, B and C are block matrices with block-sizes 

  ∆ I x ∆ K, ∆ K x ∆ J and ∆ I x ∆ J 

 Same equation, different multiplication operation 

 

 

 

 The number of elements that need to be loaded into registers shows that we do not 

care about deltaK, and we want deltaI similar to deltaJ 
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Vectorisation 

 The “inner” matrix multiplication multiplies two small matrices. We want to implement 

this matrix multiplication using vector operations. 

 We prefer operations on 4-component vectors. 

 Without transposition, this requires ∆K and ∆ J to be multiples of 4, but with 

transposition this only requires ∆ K to be a multiple of 4. 

 Due to the finite number of registers, we choose (∆ I, ∆ J, ∆ K) equal to (1, 4, 4) and (2, 

2, 4) without and with transposition, respectively.  

 We saw that similar ∆ I and ∆ J are better, and here find an advantage for the 

transposition. 

 Other schemes with more complex rearrangements than transposition are also 

possible. 
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Blocked implementation 

 for (k=0; k<n; k++) sum += b[i, k] * b[k,j]; 

 Scalar multiplication 

 2 elements loaded per multiplication 

 
 for (k=0; k<n/4 k++) { 

       sum += a[i, k].x * b[k, j] +  

             a[i, k].y * b[k+1, j] + 

             a[i, k].z * b[k+2, j] + 

             a[i, k].w * b[k+3, j]; } 

 Using 4 vector multiplication 

 20 elements read per 16 multiplications 
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Cache utilization 

 We can compute the number of cache-lines that a workgroup has to load while 

executing.. 

 We reuse cache-lines during every sequence of 4 iterations,  and we therefore compute 

the number of L1 cache lines needed by one workgroup for 4 iterations. 

 

 

 

 If all threads execute in the order they were started, there is no problem as long as we 

are below 100%. 

 In reality, threads diverge 

Workgroup size (dim 2) 1 2 4 8 16 32 64 128 

L1 fraction 2.0 1.0 0.52 0.28 0.19 0.19 0.28 0.52 

Li fraction (transposed) 1.0 0.52 0.28 0.19 0.19 0.28 0.52 1.0 
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Inside a Core 

),,,max( 10 TexLSAAT 
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Thread divergence 

 Threads execute independently and have independent PC values 

 Divergence in PC values due to cache misses and behaviour at various queues 

 One workgroup will work on several iterations at once 

 Several workgroups will be simultaneously active (for large enough matrices) 

 This increases cache usage 

 Lower estimated cache usage without thread divergence is a buffer against performance 

degradation due to thread divergence 
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Cache blocking 

 We need to handle thread divergence for large matrices 

 We introduce another level of blocking, considering the matrices to consist of larger 

blocks 

 We pause the loop at the end of every block, waiting for the remaining threads to finish. 

 This delays all threads at workgroup switch, and therefore has a cost. 

 It ensures that all threads active on the GPU work on a small dataset, allowing better 

cache utilization. 

 A trade-off that is needed for larger matrices. 
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Implementation 

 We wait every dk iterations of the inner loop 

  for (uint k = 0; k < nv4; k += dk) 

        { 

   for (uint kk = k; kk < k + dk; kk += 1) 

   { 

                        // Inner loop body 

   } 

  // Wait for all work-items to finish the current tile. 

  barrier(CLK_GLOBAL_MEM_FENCE); 

  } 
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Barriers 

 At a barrier, all threads in the workgroup enter the texture pipe and wait until all 

threads have arrived. 

 Then they exit from the pipe, one thread at a time. 

 In many cases relating to correctness, barriers can be avoided and replaced by implicit 

barriers at job-switch or by explicit synchronization using atomics. 

 For performance, we have seen that barriers can be useful to counter thread 

divergence. 
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Transposition revisited 

 In sequential execution, transposition minimizes cache misses. 

 On a parallel architecture, this is less clear,  however 

 It allows us to use better register blocking, for a good trade-off between less loads and 

more vector operations. 

 It decreases the L1 cache usage (for our preferred workgroup sizes), allowing us to 

cope better with thread divergence. 

  Transposition allows us to keep looking at the same page of memory for a longer time, 

which is beneficial for the MMU. 
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