
Platform Independent Memory
Protection for OpenCL kernels

Mikael Lepistö - Vincit Ltd.

• We implemented memory protection for WebCL kernels
• Same kind of approach can be implemented for OpenCL as well
• It guarantees that when you are running kernel on CPU/GPU, it will not

be able to access memory of any other “process” that is running on the
same hardware.

• Makes sure that statically allocated and local memory is wiped before
given to kernel.

VINCIT LTD

Passionate Software Company

Employees 100 Founded in 2007

1# Great Place

to Work Finland

2014

Technology Fast 50,

Deloitte

• Finnish software vendor with wide area of expertise (embedded,
compilers, machine vision, mobile, web and more..)

• Puts lot of effort to keep customers and employees happy
• #1 Great Place to Work in Finland 2014
• Among the fastest growing software vendors in Finland
• you can trust the Black Duck

!

Mikael Lepistö
Passionate Software Engineer @Vincit

mikael.lepisto@vincit.fi
!

Lead developer of WebCL C memory protection
!

Over 10 years experience on
compilers and custom processor design toolset
(some of it @Tampere University of Technology)

Roadmap
!

Protection Basics

!

Demo

!

Questions

• How we ended up with current approach
• Typical “Hey, our numbers of performance overhead are really good” -

demo

Minimum Requirements

kernel void example_kernel(global float* in) {
 float private_stuff[10];
 // do your stuff
}

Memory passed to kernel in
buffer by host code

Memory allocated
statically

Limits of the memory accessible for kernel

Checks to prevent invalid access

*(clamp(address, address_min, address_max))

Memory passed to kernel in
buffer by host code

Memory allocated
statically

• We have to figure out which are the valid memory areas that kernel is
allowed to access

• If we know ranges of valid addresses, checking is easy to do e.g. with
clamp

Address limits of statically allocated
variables

&private_stuff[0], &private_stuff[9]

The memory accessible for kernel

Address range for statically
allocated memory

kernel void example_kernel(global float* in) {
 float private_stuff[10];
 // do your stuff
}

Memory passed to kernel in
buffer by host code

Memory allocated
statically

Memory allocated
statically

Memory passed to kernel in
buffer by host code

• For static allocations we can easily find out the start and end addresses

Getting size of memory passed to
kernel

kernel void example_kernel(global float* in, size_t in_count) {
 float private_stuff[10];
 // do your stuff
}

The memory accessible for kernel

For buffers passed to kernel add
size variable

kernel void example_kernel(global float* in) {
 float private_stuff[10];
 // do your stuff
}

Memory passed to kernel in
buffer by host code

Memory allocated
statically

• For memory buffers passed to kernel we have to add an additional size
argument

• Argument tells how many items there are allocated in the end of passed
pointer

• Size argument is set by trusted party. E.g. by host code which is applying
protection to kernel.

Next Problem

What is valid address range of a pointer?

*(clamp(address, ??address_min??, ??address_max??))

✓ Find out valid memory ranges Static
allocations

Kernel
arguments

• Now we know all valid memory areas
• There might be complex pointer arithmetics done before memory access

is done
• How we know when access is done which one of the all memory areas we

should check?
• 1st try to do this we called Fat Pointers

Fat Pointers
(traditional way)

kernel void example_kernel(global float* in, global float* out) {
 global float *first = &in[4];
 global float *second = first;
 out[0] = *second;
}

kernel void example_kernel(global float* in, size_t in_count, global float* out, size_t out_count) {
 global float *first = &in[4];
 global float *first_min = &in[0];
 global float *first_max = &in[in_count-1];
 global float *second = first;
 global float *second_min = first_min;
 global float *second_max = first_max;
 *(clamp(out+0, &out[0], &out[out_count-1])) = *(clamp(second, second_min, second_max));
}

2x reads to get limits

2 extra loads and 2 extra
writes when assigning

pointer

• In this approach we added 2 extra variables for each pointer which were
used to track correct limits

• This looks to cause quite heavy overhead, luckily most of the limits can be
resolved during the instrumentation so it is possible to write efficient
code also for this approach

Fat Pointers
(problematic way)

float* next(float* ptr) {
 return ptr + 1;
}

void passing_ptr(float* ptr, float* ptr_min, float* ptr_max) {
}
!
// now think of passing struct where is
// pointer inside... how to pass limits?

• There are lot of corner cases which made implementation of this
method really hard

• Every time when one passes pointer or returns pointer, also limits needs
to be passed

• Casting between integers and pointers, limits are lost
• Tracking limits of pointer inside struct probably cannot be implemented

this way
• Allocating array of pointers requires allocating 2 extra arrays to be able

to track limits
• Aggressive inlining before applying protection to LLVM IR did help to

many problem cases

Better Approach
(check if memory access is valid against all memory areas of address space)

Memory area bookkeeping

AS start end

global &out[0] &out[size]

private &index &index + 1

… <many more>

private &privatevar1001 &privatevar1001

There might be 1001
private variables can’t

check that many fragments.

!
kernel void example_kernel(global float* out) {
!
 int index = get_global_id(0);
 // TODO: allocate many variables
 int privatevar1001;
}

• Fat Pointers did seem unnecessary hard
• We can collect bookkeeping of all the valid memory areas
• After that when memory is accesses we check against all the areas of that

address space if it is inside one of the memory areas
• Usually global / local memory accesses are easy to track to correct limits

instrumentation time
• Those private address space variables which might be accessed indirectly

are collected to be one continuous memory area

Better Approach
(need to come up with punchy name)

kernel void example(global float* out) {
 int index = get_global_id(0);
 // TODO: allocate many variables
 float privatevar;
 out[0] = *(&privatevar);
}

typedef struct {
 int* out_min;
 int* out_max;
} GlobalLimits;
!
typedef struct {
 float privatevar;
} PrivateAddressSpace;
!
typedef struct {
 GlobalLimits gl;
 PrivateAddressSpace pa;
} ProgramAllocations;
!
kernel void example(global int* out, size_t out_size) {
 ProgramAllocations prog_mem_areas = {
 { &out[0], &out[out_size]},
 {}
 };
 ProgramAllocations* pm = &prog_mem_areas;
 *clamp(out, pm->gl.out_min, pm->gl.out_max) =
 *clamp(&(pm->pa.privatevar), &pm->pa, &pm->pa + 1);
}

Variable
allocation
moved to

struct

Struct field
used instead

• In OpenCL C level one can make variables to be in continuous area by
putting them to struct

• Bookkeeping struct is allocated in start of kernel
• Now tracing code is not necessary anymore, we just look places where

are memory accesses and clamp them to be inside one of the valid
memory areas, most of the time one check is enough
!
!

Fat vs. New

Fat New

Lots of extra variables Only few new variables to use with
bookkeeping

More loads / stores while assigning
poitners

No need to keep track of pointer
limits

Can’t do any kind of pointer magic No restrictions to pointer arithmetics

• We got rid of most of the drawbacks of Fat Pointer approach

Current status

Command line client

Code in Khronos Github

https://github.com/KhronosGroup/webcl-validator

C API + library.

Cross platform compatible

• We made Clang/LLVM based source to source transformation version of
the method for Khronos WebCL working group

• Can be used with dynamic/static library or with command line client
• Tested with Visual Studio (Windows), Xcode (OSX) and gcc (Linux)

barrier(CLK_LOCAL_MEM_FENCE);
for (j = 0; j < tile_size;)
{
 float16 smem1 = *(__local float16*)(shared_position + (j>>2));
 j+= 4;
 float16 smem2 = *(__local float16*)(shared_position + (j>>2));
 j+= 4;
!
 force = ComputeForce(force, smem1.s0123, position, softening_squared);
 force = ComputeForce(force, smem1.s4567, position, softening_squared);
 force = ComputeForce(force, smem1.s89ab, position, softening_squared);
 force = ComputeForce(force, smem1.scdef, position, softening_squared);
!
 force = ComputeForce(force, smem2.s0123, position, softening_squared);
 force = ComputeForce(force, smem2.s4567, position, softening_squared);
 force = ComputeForce(force, smem2.s89ab, position, softening_squared);
 force = ComputeForce(force, smem2.scdef, position, softening_squared);
}
barrier(CLK_LOCAL_MEM_FENCE);

Demo
!
• Core loop was optimised by making as wide memory accesses as

possible (float16 + splitting it to 4 parts for computation)

barrier(CLK_LOCAL_MEM_FENCE);
for (j = 0; j < tile_size;) {
//
float16 smem1 = (*(clamp((shared_position + (j>>2)),
 _wcl_allocs->ll.IntegrateSystem__shared_position_min,
 _wcl_allocs->ll.IntegrateSystem__shared_position_max,
 _wcl_allocs->ln)));
j+= 4;
float16 smem2 = (*(clamp((shared_position + (j>>2)),
 _wcl_allocs->ll.IntegrateSystem__shared_position_min,
 _wcl_allocs->ll.IntegrateSystem__shared_position_max,
 _wcl_allocs->ln)));
j+= 4; !
force = ComputeForce(_wcl_allocs, force, smem1.s0123, position, softening_squared);
force = ComputeForce(_wcl_allocs, force, smem1.s4567, position, softening_squared);
force = ComputeForce(_wcl_allocs, force, smem1.s89ab, position, softening_squared);
force = ComputeForce(_wcl_allocs, force, smem1.scdef, position, softening_squared); !
force = ComputeForce(_wcl_allocs, force, smem2.s0123, position, softening_squared);
force = ComputeForce(_wcl_allocs, force, smem2.s4567, position, softening_squared);
force = ComputeForce(_wcl_allocs, force, smem2.s89ab, position, softening_squared);
force = ComputeForce(_wcl_allocs, force, smem2.scdef, position, softening_squared);
}
barrier(CLK_LOCAL_MEM_FENCE);

Demo / protected code
• Instrumentation added two extra clamping calls

• Demo was here

0 47,5 95 142,5 190

190 Gflops

148 Gflops

No protection

Protected 22%
Overhead

NBody Force
Simulation

• In this case overhead was 22% on GPU
• If local memory would have been accessed in float4 pieces instead of

float16 overhead would have been around 70%
• There is a lot of room for optimisations in memory protection algorithm,

but already the simplest implementation of it performs really nicely
• Time to apply protection takes around 50-100ms with modern CPU

Thank you.
Mikael Lepistö

Passionate Software Engineer @ Vincit Ltd.

mikael.lepisto@vincit.fi

https://github.com/KhronosGroup/webcl-validator

• More details about WebCL validator can be found from:
• https://github.com/KhronosGroup/webcl-validator/tree/master/doc

