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SYCL Buffers
• In SYCL, buffers represent allocation of memory on the system

– The user has no control on where the allocation resides

• Data follows execution across devices on the system

– User can provide hints to where data will be

– Dataflow patterns can be extracted to optimize performance

• Data cannot be extracted from buffers directly, accessors are 
used to indicate where access is requested

buffer<float, 1, CustomAllocator> buf{myPtr, range<1>{1}};
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SYCL Buffers – How do they work
• A buffer holds a directory of different 

copies of the data in different 
OpenCL contexts and places in host 
memory

• Last place where data was accessed 
holds most updated data

• When data is required on different 
context/host, is moved across the 
heterogeneous system

• Data is updated using the most 
efficient method for the platform
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Host

Traditional views of memory

System Memory

Traditional Computer Model

● Can allocate memory, use it on the CPU

CPU
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Host

Slightly more complex...

System 
Memory

Multi-CPU system

● Can allocate memory anywhere
● Can use it anywhere
● Access time may not be uniform! (NUMA)

CPU #1CPU #1

System 
Memory

CPU #2

Custom Allocators
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Host

Separate memory layouts

System Memory

Accelerator
Copy in

Copy out

Device
 memory

Host-directed accelerator model:

● Data is off-loaded on the device
● Host allocates on device
● No mapped pointers
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Host

Partially accessible pointers

System Memory

Accelerator

Unmap

Map to

Device
 memory

Host-directed model

● Data is off-loaded on the device
● Host allocates on device
● Mapped pointer access device on host
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AcceleratorHost

The illusion of memory

System Memory

Virtual Shared memory

● Illusion of coherent access, performance impact
● Special malloc function
● System handles transparently access in host and accelerator
● No atomics or concurrent access across devices

2.0

UVA
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AcceleratorHost

What we all ideally want

System Memory

Real shared memory access

● Device an accelerator share physical memory
● Atomic operations are possible in all levels
● Hardware complexity is much higher
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Implementing the SYCL buffer
• When data is required in a different 

context, we need to open a channel 
from the previous one to the new one

• This channel represents the fastest 
way of communicating SYCL contexts

• The actor can be either in the new 
context or in the old one

– The new context can get the information from 
thew previous one

– The old context can put information on the 
new one
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Is a SYCL buffer the right abstraction 
for C++?

• SYCL buffers have some limitations

– Group Working on improvements for next specification

• SYCL implementations shipped to an specific system, 
implementor nows all possible connections between OpenCL 
contexts or devices

• Is this the case in C++? 

– Offering a generic managed_ptr would need each implementor to 
provide its own implementation or customization point

– Some vendors or libraries may implement optimized channels for 
execution for a certain platform, how do they integrate their 
solutions to work with the managed_ptr?
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The Channel interface
● A channel is a simple 

interface, defines:
– An asynchronous put method to put 

data on a channel

– A blocking get method that gets data 
from the channel

● The get method returns 
an object that has access 
to some portion of 
memory in the channel
– Only one side of the channel can 

access a locked_page

This constructor should 
optionally take a size 

in bytes
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A trivial example using Threads
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Using Execution Contexts
● Execution agents from a given Execution Context can 

obtain an allocator from the Execution Context
● In order for an execution agent to access memory from a 

different Execution Context, a Channel is required.
● Custom implementations for pairs of Execution Contexts 

can be provided
● Developers can implement their own Channels for 

two given Execution Context
– This facilitates the creation of third-party libraries

● Not required if your system is fully coherent
– But even if it is, developers can create a channel to connect a third-party device
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