
Channels
Or why the managed_ptr is more complex than it appears

Ruyman Reyes Castro, Principal Software Engineer, Programming Models



© 2017 Codeplay Software Ltd.2

SYCL Buffers
• In SYCL, buffers represent allocation of memory on the system

– The user has no control on where the allocation resides

• Data follows execution across devices on the system

– User can provide hints to where data will be

– Dataflow patterns can be extracted to optimize performance

• Data cannot be extracted from buffers directly, accessors are 
used to indicate where access is requested

buffer<float, 1, CustomAllocator> buf{myPtr, range<1>{1}};



© 2017 Codeplay Software Ltd.3

SYCL Buffers – How do they work
• A buffer holds a directory of different 

copies of the data in different 
OpenCL contexts and places in host 
memory

• Last place where data was accessed 
holds most updated data

• When data is required on different 
context/host, is moved across the 
heterogeneous system

• Data is updated using the most 
efficient method for the platform

SYCL Buffer

Host
Storage

A

ContextA ContexB

D1 D2 D3

Host
Storage

B



© 2017 Codeplay Software Ltd.4

Host

Traditional views of memory

System Memory

Traditional Computer Model

● Can allocate memory, use it on the CPU

CPU



© 2017 Codeplay Software Ltd.5

Host

Slightly more complex...

System 
Memory

Multi-CPU system

● Can allocate memory anywhere
● Can use it anywhere
● Access time may not be uniform! (NUMA)

CPU #1CPU #1

System 
Memory

CPU #2

Custom Allocators



© 2017 Codeplay Software Ltd.6

Host

Separate memory layouts

System Memory

Accelerator
Copy in

Copy out

Device
 memory

Host-directed accelerator model:

● Data is off-loaded on the device
● Host allocates on device
● No mapped pointers



© 2017 Codeplay Software Ltd.7

Host

Partially accessible pointers

System Memory

Accelerator

Unmap

Map to

Device
 memory

Host-directed model

● Data is off-loaded on the device
● Host allocates on device
● Mapped pointer access device on host



© 2017 Codeplay Software Ltd.8

AcceleratorHost

The illusion of memory

System Memory

Virtual Shared memory

● Illusion of coherent access, performance impact
● Special malloc function
● System handles transparently access in host and accelerator
● No atomics or concurrent access across devices

2.0

UVA



© 2017 Codeplay Software Ltd.9

AcceleratorHost

What we all ideally want

System Memory

Real shared memory access

● Device an accelerator share physical memory
● Atomic operations are possible in all levels
● Hardware complexity is much higher



© 2017 Codeplay Software Ltd.10

Implementing the SYCL buffer
• When data is required in a different 

context, we need to open a channel 
from the previous one to the new one

• This channel represents the fastest 
way of communicating SYCL contexts

• The actor can be either in the new 
context or in the old one

– The new context can get the information from 
thew previous one

– The old context can put information on the 
new one

SYCL Buffer

Host
Storage

A

ContextA ContexB

D1 D2 D3

Host
Storage

B

Channel



© 2017 Codeplay Software Ltd.11

Is a SYCL buffer the right abstraction 
for C++?

• SYCL buffers have some limitations

– Group Working on improvements for next specification

• SYCL implementations shipped to an specific system, 
implementor nows all possible connections between OpenCL 
contexts or devices

• Is this the case in C++? 

– Offering a generic managed_ptr would need each implementor to 
provide its own implementation or customization point

– Some vendors or libraries may implement optimized channels for 
execution for a certain platform, how do they integrate their 
solutions to work with the managed_ptr?



© 2017 Codeplay Software Ltd.12

The Channel interface
● A channel is a simple 

interface, defines:
– An asynchronous put method to put 

data on a channel

– A blocking get method that gets data 
from the channel

● The get method returns 
an object that has access 
to some portion of 
memory in the channel
– Only one side of the channel can 

access a locked_page

This constructor should 
optionally take a size 

in bytes



© 2017 Codeplay Software Ltd.13

A trivial example using Threads



© 2017 Codeplay Software Ltd.14

Using Execution Contexts
● Execution agents from a given Execution Context can 

obtain an allocator from the Execution Context
● In order for an execution agent to access memory from a 

different Execution Context, a Channel is required.
● Custom implementations for pairs of Execution Contexts 

can be provided
● Developers can implement their own Channels for 

two given Execution Context
– This facilitates the creation of third-party libraries

● Not required if your system is fully coherent
– But even if it is, developers can create a channel to connect a third-party device



@codeplaysoft codeplay.com

W
e’re

 

Hiri
ng!

co
deplay

.co
m

/c
are

ers/

info@codeplay.c
om

Thanks for Listening


	Slide 1
	Slide 2
	Slide 3
	Tips
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

