
Using SYCL as an Implementation Framework for
HPX.Compute

Marcin Copik 1

Hartmut Kaiser 2

1 RWTH Aachen University
mcopik@gmail.com

2 Louisiana State University
Center for Computation and Technology

The STEllAR Group

May 16, 2017
1 of 29

Plan

HPX
Concepts

HPX.Compute

Challenges

Benchmarking

Summary
Goals

1 of 29

What is HPX?

� High Performance ParalleX 1,2

� Runtime for parallel and distributed applications

� Written purely in C++, with large usage of Boost

� Unified and standard-conforming C++ API

1
Parallex an advanced parallel execution model for scaling-impaired applications-H. Kaiser et al - ICPPW, 2009

2
A Task Based Programming Model in a Global Address Space - H. Kaiser et al - PGAS, 2014

2 of 29

What is HPX?

3 of 29

HPX and C++ standard

HPX implements and even extends:

� Concurrency TS, N4107

� Extended async, N3632

� Task block, N4411

� Parallelism TS, N4105

� Executor, N4406

Another components

� partitioned vector

� segmented algorithms3

3
Segmented Iterators and Hierarchical Algorithms-Austern, Matthew H. - Generic Programming: International

Seminar on Generic Programming, 2000
4 of 29

HPX and C++ standard

HPX implements and even extends:

� Concurrency TS, N4107

� Extended async, N3632

� Task block, N4411

� Parallelism TS, N4105

� Executor, N4406

Another components

� partitioned vector

� segmented algorithms3

3
Segmented Iterators and Hierarchical Algorithms-Austern, Matthew H. - Generic Programming: International

Seminar on Generic Programming, 2000
4 of 29

Overview

5 of 29

Execution policy

Puts restriction on execution, ensuring thread-safety

C++17

� sequential

� parallel

� parallel unsequenced

HPX

� asynchronous sequential

� asynchronous parallel

6 of 29

Asynchronous execution

Future

� represents result of an unfinished computation

� enables sending off operations to another thread

� TS allows for concurrent composition of different algorithms

� explicit depiction of data dependencies

Compose different operations
hpx::future <type > f1 = hpx:: parallel :: for_each(par_task ,

...);

auto f2 = f1.then(

[](hpx::future <type > f1) {

hpx:: parallel :: for_each(par_task , ...);

}

);

7 of 29

Plan

HPX
Concepts

HPX.Compute

Challenges

Benchmarking

Summary
Goals

7 of 29

HPX.Compute

� a unified model for heterogeneous programming

� platform and vendor independent

� interface based on C++17 and further extensions to C++ standard

Backends for:

� host

� CUDA

� HCC4

� SYCL

4
unfinished

8 of 29

HPX.Compute

� a unified model for heterogeneous programming

� platform and vendor independent

� interface based on C++17 and further extensions to C++ standard

Three major concepts:

� target

� allocator

� executor

4
unfinished

8 of 29

Target

� an abstract type expressing data locality and place of execution

� variety of represented hardware requires a simplified interface

Target interface:

// Blocks until target is ready

void synchronize ();

// Future is ready when all tasks allocated on target have

been finished

hpx::future <void > get_future () const;

9 of 29

Target

� an abstract type expressing data locality and place of execution

� variety of represented hardware requires a simplified interface

SYCL implementation of target

� communicaties with device through sycl::queue

� multiple targets may represent the same device

� requires additional measures for asynchronous communication

9 of 29

Allocator

� allocate and deallocate larger chunks of data on target

� data allocation is trivial on backends where memory is accessed
with pointers (host, CUDA)

SYCL implementation of allocator

� create sycl::buffer objects

� not possible to tie a buffer to given device

10 of 29

Executor

� execute code on device indicated by data location

� usual GPU-related restrictions on allowed C++ operations

� marking device functions not required

Interface of an executor
struct default_executor : hpx:: parallel :: executor_tag

{

template <typename F, typename Shape , typename ... Ts>

void bulk_launch(F && f, Shape const& shape , Ts &&... ts

) const;

template <typename F, typename Shape , typename ... Ts>

std::vector <hpx::future <void >> bulk_async_execute(F && f

, Shape const& shape , Ts &&... ts) const;

};

11 of 29

Plan

HPX
Concepts

HPX.Compute

Challenges

Benchmarking

Summary
Goals

11 of 29

Device accessors

Capturing data buffers in SYCL

� a host iterator can only store sycl::buffer and position

� a separate device iterator has to be created in command group
scope

� sycl::global ptr represents an iterator type on device, but
std::iterator traits specialization or related typedefs are
missing in SYCL standard

Comparision with other backends:

� an additional static conversion function is necessary

� distinct iterator types on host and device

� requires templated function objects or C++14 generic lambda
12 of 29

Data movement

Problem: copy data from a device to a given memory block on
host, with a selection of an offset and size?

� host accessor - an intermediate copy in SYCL runtime, no
flexibility, may lead to deadlocks if a host accessor is not destroyed

� set final data - applicable only for buffer destruction, no
flexibility

� range-based subbufer - can emulate offset and size for
host accessor

� map allocator - data is copied to a pointer defined by the SYCL
user, but it can not be changed

Further issues

� no ability to synchronize with data transfer
13 of 29

Data movement

Suggested extension for SYCL

// copy all contents of buffer

template <typename T, int N, typename OutIter >

sycl:: event copy(const sycl::buffer <T,N> & src , OutIter

dest);

// copy range [begin , end) to buffer , fully replacing its

contents

template <typename InIter , T, int N>

sycl:: event copy(InIter begin , InIter end , sycl::buffer <T,

N> & dest);

14 of 29

Data movement

Suggested extension for SYCL

// write range to buffer starting at ’pos’

template <typename T, int N, typename InIter >

sycl:: event sycl::buffer <T,N>:: write(

std:: size_t pos , InIter begin , InIter end

);

// read ’size’ elements starting at ’pos’

template <typename T, int N, typename OutIter >

sycl:: event sycl::buffer <T,N>:: read(

size_t pos , size_t size , OutIter dest

);

15 of 29

Asynchronous execution

What SYCL offers for synchronization?

� blocking wait for tasks in queue

� blocking wait for enqueued kernels with sycl::event

� SYCL API does not cover OpenCL callbacks

Competing solutions

� stream callbacks in CUDA

� an extended future in C++AMP/HCC

16 of 29

Asynchronous execution

Use SYCL-OpenCL interoperability for callbacks

// future_data is a shared state of hpx:: future

cl::sycl:: queue queue = ...;

future_data * ptr = ...;

cl_event marker;

clEnqueueMarkerWithWaitList(queue.get(), 0, nullptr , &marker

);

clSetEventCallback(marker , CL_COMPLETE ,

[](cl_event , cl_int , void * ptr) {

marker_callback(static_cast <future_data *>(ptr));

}, ptr);

Downside

� not applicable for SYCL host device

17 of 29

Non-standard layout datatypes

An example: standard C++ tuple

� common std::tuple implementations, such as in libstdc++ or
libc++, are not C++11 standard layout due to multiple inheritance

� adding a non-standard implementation requires complex changes in
existing codebase

Approaches for other types

� refactor current solution to be C++ standard layout

� manually deconstruct the object and construct again in kernel
scope

� add serialization and deserialization interface to problematic types

� automatic serialization by the compiler - technique used in HCC
18 of 29

Kernel naming

� two-tier compilation needs to link kernel code and invocation

� name has to be unique

� breaks the standard API for STL algorithms

� different extensions to C++ may solve this problem5

5
Khronos’s OpenCL SYCL to support Heterogeneous Devices for C++ - Wong, M. et al. - P0236R0

19 of 29

Named execution policy

� execution policy contains the name

� use the type of function object if no name is provided

� used in ParallelSTL project6

A SYCL named execution policy

struct DefaultKernelName {};

template <class KernelName = DefaultKernelName >

class sycl_execution_policy {

...

};

6https://github.com/KhronosGroup/SyclParallelSTL/
20 of 29

https://github.com/KhronosGroup/SyclParallelSTL/

Named execution policy

� execution policy contains the name

� use the type of function object if no name is provided

� used in ParallelSTL project6

Cons:

� no logical connection between execution policy and kernel name

� duplicating std::par execution policy

6https://github.com/KhronosGroup/SyclParallelSTL/
20 of 29

https://github.com/KhronosGroup/SyclParallelSTL/

Named execution policy

Our solution: executor parameters

� an HPX extension to proposed concepts for executors

� a set of configuration options to control execution

� control settings which are independent from the actual executor
type

� example: OpenMP-like chunk sizes

Pass kernel name as a parameter
// uses default executor: par

hpx:: parallel :: for_each(

hpx:: parallel ::par.with(

hpx:: parallel :: kernel_name <class Name >()

),

...

);

21 of 29

Plan

HPX
Concepts

HPX.Compute

Challenges

Benchmarking

Summary
Goals

21 of 29

Benchmarking hardware for STREAM

Khronos SYCL

� GPU: AMD Radeon R9 Fury Nano

� ComputeCPP: CommunityEdition-0.1.1

� OpenCL: AMD APP SDK 2.9

GPU-STREAM has been used to measure SYCL performance:
https://github.com/UoB-HPC/GPU-STREAM

22 of 29

https://github.com/UoB-HPC/GPU-STREAM

STREAM

Scale Copy Add Triad
0

100

200

300

400

B
an

d
w

id
th

(G
B

/s
)

STREAM benchmark on 305 MB arrays

HPX
HPX without callbacks

SYCL

23 of 29

STREAM

0.01 0.1 1 10 100
0.1

1

10

100

Array size (MB)

B
an

d
w

id
th

(G
B

/s
)

STREAM scaling with size

HPX
HPX without callbacks

SYCL

24 of 29

Plan

HPX
Concepts

HPX.Compute

Challenges

Benchmarking

Summary
Goals

24 of 29

Summary

The Good

� performance and capabilities comparable with competing standards

� no requirement of marking functions capable of running on a device

� previous experiments revealed that an overhead of ComputeCpp, an
offline device compiler for SYCL, is not severe during build process

25 of 29

Summary

The Bad

� kernel names appearing in standard interface

� troublesome capture of complex types storing SYCL buffers

� lack of explicit data movement

� limited support for SPIR on modern GPUs

26 of 29

Summary

The Ugly

� asynchronous callbacks work but with a slight overhead

� SYCL pointer types can not be treated as iterators

� troublesome capture of non-standard layout types

27 of 29

Future

Goals

� demonstrate a complex problem solved over host and GPU with
our model and STL algorithms

� extend implementation with more algorithms

Challenges

� how to express on-chip/local memory through our model?

� try to reduce overhead for shorter kernels

28 of 29

Thanks for your attention

mcopik@gmail.com

29 of 29

	HPX
	Concepts

	HPX.Compute
	Challenges
	Benchmarking
	Summary
	Goals

