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What is HPX?

High Performance ParalleX 12

Runtime for parallel and distributed applications

Written purely in C++4-, with large usage of Boost
Unified and standard-conforming C++ API

1Para//ex an advanced parallel execution model for scaling-impaired applications-H. Kaiser et al - ICPPW, 2009
2A Task Based Programming Model in a Global Address Space - H. Kaiser et al - PGAS, 2014
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What is HPX?

C++1y Parallelism APIs

. Local Control Objects
Threading Subsystem (LCOs)
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HPX and C++ standard

HPX implements and even extends:

m Concurrency TS, N4107
Extended async, N3632
Task block, N4411
Parallelism TS, N4105
Executor, N4406

3Segmented Iterators and Hierarchical Algorithms-Austern, Matthew H. - Generic Programming: International
Se‘{noi?a!gon Generic Programming, 2000
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HPX and C++ standard

HPX implements and even extends:

m Concurrency TS, N4107
Extended async, N3632
Task block, N4411
Parallelism TS, N4105
Executor, N4406

Another components

® partitioned vector

® segmented algorithms3

3Segmented Iterators and Hierarchical Algorithms-Austern, Matthew H. - Generic Programming: International
Se‘{noi?ajgon Generic Programming, 2000
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Overview
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Execution policy

Puts restriction on execution, ensuring thread-safety

C++17 HPX
B sequential B asynchronous sequential
® parallel ® asynchronous parallel

® parallel unsequenced
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Asynchronous execution

Future

B represents result of an unfinished computation

® enables sending off operations to another thread

m TS allows for concurrent composition of different algorithms
m explicit depiction of data dependencies

Compose different operations

hpx::future<type> f1 = hpx::parallel::for_each(par_task,
auto f2 = f1.then(
[](hpx::future<type> f1) {
hpx::parallel::for_each(par_task, ...);
}

);
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HPX.Compute

® 3 unified model for heterogeneous programming
® platform and vendor independent

® interface based on C++17 and further extensions to C++ standard

Backends for:

® host

= CUDA
= HCC*
= SYCL
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HPX.Compute

® 3 unified model for heterogeneous programming
® platform and vendor independent

® interface based on C++17 and further extensions to C++ standard

Three major concepts:

® target
® allocator

B executor
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Target

® an abstract type expressing data locality and place of execution

® variety of represented hardware requires a simplified interface
Target interface:

//Blocks until target is ready

void synchronize();

//Future is ready when all tasks allocated on target have
been finished

hpx::future<void> get_future() const;
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Target

® an abstract type expressing data locality and place of execution

® variety of represented hardware requires a simplified interface

SYCL implementation of target

B communicaties with device through sycl: :queue
® multiple targets may represent the same device

® requires additional measures for asynchronous communication
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Allocator

® allocate and deallocate larger chunks of data on target

B data allocation is trivial on backends where memory is accessed
with pointers (host, CUDA)

SYCL implementation of allocator

B create sycl::buffer objects

B not possible to tie a buffer to given device
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Executor

B execute code on device indicated by data location
m ysual GPU-related restrictions on allowed C++ operations
® marking device functions not required

Interface of an executor

struct default_executor : hpx::parallel::executor_tag
{

template <typename F, typename Shape, typename ... Ts>

void bulk_launch(F && f, Shape const& shape, Ts &&... ts
) const;

template <typename F, typename Shape, typename ... Ts>

std::vector<hpx::future<void>> bulk_async_execute(F && £

, Shape const& shape, Ts &&... ts) const;
};
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Device accessors

Capturing data buffers in SYCL

B 3 host iterator can only store sycl: :buffer and position
B 3 separate device iterator has to be created in command group
scope

® sycl::global_ptr represents an iterator type on device, but

std::iterator_traits specialization or related typedefs are
missing in SYCL standard

Comparision with other backends:

® an additional static conversion function is necessary
® distinct iterator types on host and device

® requires templated function objects or C++14 generic lambda
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Data movement

Problem: copy data from a device to a given memory block on
host, with a selection of an offset and size?

® host_accessor - an intermediate copy in SYCL runtime, no
flexibility, may lead to deadlocks if a host accessor is not destroyed

m set_final data - applicable only for buffer destruction, no
flexibility

B range-based subbufer - can emulate offset and size for
host_accessor

® map_allocator - data is copied to a pointer defined by the SYCL
user, but it can not be changed

Further issues

® no ability to synchronize with data transfer
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Data movement

Suggested extension for SYCL

// copy all contents of buffer

template<typename T, int N, typename OutlIter>

sycl::event copy(const sycl::buffer<T,N> & src, Outlter
dest) ;

// copy range [begin, end) to buffer, fully replacing its
contents

template<typename InIter, T, int N>

sycl::event copy(InIter begin, InIter end, sycl::buffer<T,
N> & dest);

14 of 29

| @ STE||AR GROUP




Data movement

Suggested extension for SYCL

// write range to buffer starting at ’pos’

template<typename T, int N, typename InlIter>

sycl::event sycl::buffer<T,N>::write(
std::size_t pos, InlIter begin, InlIter end

);

// read ’size’ elements starting at ’pos’
template<typename T, int N, typename OutIter>
sycl::event sycl::buffer<T,N>::read(

size_t pos, size_t size, OutIter dest

)
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Asynchronous execution

What SYCL offers for synchronization?

® blocking wait for tasks in queue
B blocking wait for enqueued kernels with sycl: :event
m SYCL API does not cover OpenCL callbacks

Competing solutions

® stream callbacks in CUDA
® an extended future in C++AMP/HCC
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Asynchronous execution

Use SYCL-OpenCL interoperability for callbacks

// future_data is a shared state of hpx::future
cl::sycl::queue queue =
future_data * ptr = ...;
cl_event marker;
clEnqueueMarkerWithWaitList (queue.get (), O, nullptr, &marker
)
clSetEventCallback (marker, CL_COMPLETE,
[J(cl_event, cl_int, void * ptr) {
marker_callback(static_cast<future_data*>(ptr));
}, ptr);

<

Downside

® not applicable for SYCL host device
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Non-standard layout datatypes

An example: standard C++ tuple
® common std: :tuple implementations, such as in libstdc++ or
libc++, are not C++11 standard layout due to multiple inheritance

B adding a non-standard implementation requires complex changes in
existing codebase

Approaches for other types

m refactor current solution to be C++ standard layout

® manually deconstruct the object and construct again in kernel
scope

® add serialization and deserialization interface to problematic types

® automatic serialization by the compiler - technique used in HCC
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Kernel naming

B two-tier compilation needs to link kernel code and invocation
® name has to be unique
breaks the standard API for STL algorithms

different extensions to C++ may solve this problem®

19 05 fbronos's OpenCL SYCL to support Heterogeneous Devices for C++ - Wong, M. et al. - P0236R0
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Named execution policy

B execution policy contains the name

® use the type of function object if no name is provided
® used in ParallelSTL project®

A SYCL named execution policy
struct DefaultKernelName {};

template <class KernelName = DefaultKernelName>
class sycl_execution_policy {

};

20 : ftps: //github.com/KhronosGroup/SyclParallelSTL/
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https://github.com/KhronosGroup/SyclParallelSTL/

Named execution policy

B execution policy contains the name
® yse the type of function object if no name is provided
® used in ParallelSTL project®

Cons:

® no logical connection between execution policy and kernel name

® duplicating std: : par execution policy

20 : ftps: //github.com/KhronosGroup/SyclParallelSTL/
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https://github.com/KhronosGroup/SyclParallelSTL/

Named execution policy

Our solution: executor parameters

®m an HPX extension to proposed concepts for executors
® 3 set of configuration options to control execution

® control settings which are independent from the actual executor
type
m example: OpenMP-like chunk sizes

Pass kernel name as a parameter
// uses default executor: par
hpx::parallel::for_each(
hpx::parallel::par.with(
hpx::parallel::kernel_name<class Name>()

),

);
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Benchmarking
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Benchmarking hardware for STREAM

Khronos SYCL

® GPU: AMD Radeon R9 Fury Nano
= ComputeCPP: CommunityEdition-0.1.1
®= OpenCL: AMD APP SDK 2.9

GPU-STREAM has been used to measure SYCL performance:
https://github.com/UoB-HPC/GPU-STREAM
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https://github.com/UoB-HPC/GPU-STREAM
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STREAM
STREAM scaling with size
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Summary

The Good

m performance and capabilities comparable with competing standards
® no requirement of marking functions capable of running on a device

B previous experiments revealed that an overhead of ComputeCpp, an
offline device compiler for SYCL, is not severe during build process
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Summary

The Bad

kernel names appearing in standard interface

troublesome capture of complex types storing SYCL buffers

lack of explicit data movement

limited support for SPIR on modern GPUs
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Summary

The Ugly

® asynchronous callbacks work but with a slight overhead
m SYCL pointer types can not be treated as iterators

® troublesome capture of non-standard layout types

27 of 29

| @ STE||AR GROUP




Future

Goals

® demonstrate a complex problem solved over host and GPU with
our model and STL algorithms

® extend implementation with more algorithms

Challenges

® how to express on-chip/local memory through our model?

B try to reduce overhead for shorter kernels
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Thanks for your attention

mcopik@gmail.com
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