Using SYCL as an Implementation Framework for
HPX.Compute

Marcin Copik !

Rm Hartmut Kaiser

1 RWTH Aachen University
mcopik@gmail.com
2 Louisiana State University
Center for Center for Computation and Technology

LSL) Computation & Technology The STEIIAR Group

Interdisciplinary | Innovative | Inventive

2

Q STE||AR GROUP May 16, 2017
1 of 29
| @ STE||AR GROUP

Plan

HPX

1 of 29

| @ STE||AR GROUP

What is HPX?

High Performance ParalleX 12

Runtime for parallel and distributed applications

Written purely in C++4-, with large usage of Boost
Unified and standard-conforming C++ API

1Para//ex an advanced parallel execution model for scaling-impaired applications-H. Kaiser et al - ICPPW, 2009
2A Task Based Programming Model in a Global Address Space - H. Kaiser et al - PGAS, 2014

2 0of 29
| @ STE||AR GROUP

What is HPX?

C++1y Parallelism APIs

. Local Control Objects
Threading Subsystem (LCOs)

w
(5}
=
3}
=
—
=}
Ay
-
5}
g
B

Performance Counter
Framework

Policy En

Active Global Address
Space (AGAS) Parcel Transport Layer

3 of 29
| @ STE||AR GROUP

HPX and C++ standard

HPX implements and even extends:

m Concurrency TS, N4107
Extended async, N3632
Task block, N4411
Parallelism TS, N4105
Executor, N4406

3Segmented Iterators and Hierarchical Algorithms-Austern, Matthew H. - Generic Programming: International
Se‘{noi?a!gon Generic Programming, 2000

| @ STE||AR GROUP

HPX and C++ standard

HPX implements and even extends:

m Concurrency TS, N4107
Extended async, N3632
Task block, N4411
Parallelism TS, N4105
Executor, N4406

Another components

® partitioned vector

® segmented algorithms3

3Segmented Iterators and Hierarchical Algorithms-Austern, Matthew H. - Generic Programming: International
Se‘{noi?ajgon Generic Programming, 2000

| @ STE||AR GROUP

Overview

Application ‘

Parall el
Asynchr

Restrictions —

Futures, Async, Dataflow

e.g. chunk size
Sequence, Concepts Exceution Policies ﬁ 3 egr ik s ’
)

\-\‘-_
Parameters...
! T
\

5 of 29

— @ STE||AR GROUP

Execution policy

Puts restriction on execution, ensuring thread-safety

C++17 HPX
B sequential B asynchronous sequential
® parallel ® asynchronous parallel

® parallel unsequenced

6 of 29
|

@ STE||AR GROUP

Asynchronous execution

Future

B represents result of an unfinished computation

® enables sending off operations to another thread

m TS allows for concurrent composition of different algorithms
m explicit depiction of data dependencies

Compose different operations

hpx::future<type> f1 = hpx::parallel::for_each(par_task,
auto f2 = f1.then(
[](hpx::future<type> f1) {
hpx::parallel::for_each(par_task, ...);
}

);

7 of 29

| @ STE||AR GROUP

Plan

HPX.Compute

7 of 29

| @ STE||AR GROUP

HPX.Compute

® 3 unified model for heterogeneous programming
® platform and vendor independent

® interface based on C++17 and further extensions to C++ standard

Backends for:

® host

= CUDA
= HCC*
= SYCL

8 O‘:Lé%finished
| @ STE||AR GROUP

HPX.Compute

® 3 unified model for heterogeneous programming
® platform and vendor independent

® interface based on C++17 and further extensions to C++ standard

Three major concepts:

® target
® allocator

B executor

8 O‘:Lé%finished
| @ STE||AR GROUP

Target

® an abstract type expressing data locality and place of execution

® variety of represented hardware requires a simplified interface
Target interface:

//Blocks until target is ready

void synchronize();

//Future is ready when all tasks allocated on target have
been finished

hpx::future<void> get_future() const;

9 of 29

| @ STE||AR GROUP

Target

® an abstract type expressing data locality and place of execution

® variety of represented hardware requires a simplified interface

SYCL implementation of target

B communicaties with device through sycl: :queue
® multiple targets may represent the same device

® requires additional measures for asynchronous communication

9 of 29

| @ STE||AR GROUP

Allocator

® allocate and deallocate larger chunks of data on target

B data allocation is trivial on backends where memory is accessed
with pointers (host, CUDA)

SYCL implementation of allocator

B create sycl::buffer objects

B not possible to tie a buffer to given device

10 of 29

| @ STE||AR GROUP

Executor

B execute code on device indicated by data location
m ysual GPU-related restrictions on allowed C++ operations
® marking device functions not required

Interface of an executor

struct default_executor : hpx::parallel::executor_tag
{

template <typename F, typename Shape, typename ... Ts>

void bulk_launch(F && f, Shape const& shape, Ts &&... ts
) const;

template <typename F, typename Shape, typename ... Ts>

std::vector<hpx::future<void>> bulk_async_execute(F && £

, Shape const& shape, Ts &&... ts) const;
};

11 of 29
|

@ STE||AR GROUP

Plan

Challenges

11 of 29

| @ STE||AR GROUP

Device accessors

Capturing data buffers in SYCL

B 3 host iterator can only store sycl: :buffer and position
B 3 separate device iterator has to be created in command group
scope

® sycl::global_ptr represents an iterator type on device, but

std::iterator_traits specialization or related typedefs are
missing in SYCL standard

Comparision with other backends:

® an additional static conversion function is necessary
® distinct iterator types on host and device

® requires templated function objects or C++14 generic lambda

12 of 29
|

@ STE||AR GROUP

Data movement

Problem: copy data from a device to a given memory block on
host, with a selection of an offset and size?

® host_accessor - an intermediate copy in SYCL runtime, no
flexibility, may lead to deadlocks if a host accessor is not destroyed

m set_final data - applicable only for buffer destruction, no
flexibility

B range-based subbufer - can emulate offset and size for
host_accessor

® map_allocator - data is copied to a pointer defined by the SYCL
user, but it can not be changed

Further issues

® no ability to synchronize with data transfer

13 of 29

| @ STE||AR GROUP

Data movement

Suggested extension for SYCL

// copy all contents of buffer

template<typename T, int N, typename OutlIter>

sycl::event copy(const sycl::buffer<T,N> & src, Outlter
dest) ;

// copy range [begin, end) to buffer, fully replacing its
contents

template<typename InIter, T, int N>

sycl::event copy(InIter begin, InIter end, sycl::buffer<T,
N> & dest);

14 of 29

| @ STE||AR GROUP

Data movement

Suggested extension for SYCL

// write range to buffer starting at ’pos’

template<typename T, int N, typename InlIter>

sycl::event sycl::buffer<T,N>::write(
std::size_t pos, InlIter begin, InlIter end

);

// read ’size’ elements starting at ’pos’
template<typename T, int N, typename OutIter>
sycl::event sycl::buffer<T,N>::read(

size_t pos, size_t size, OutIter dest

)

15 of 29

| @ STE||AR GROUP

Asynchronous execution

What SYCL offers for synchronization?

® blocking wait for tasks in queue
B blocking wait for enqueued kernels with sycl: :event
m SYCL API does not cover OpenCL callbacks

Competing solutions

® stream callbacks in CUDA
® an extended future in C++AMP/HCC

16 of 29

| @ STE||AR GROUP

Asynchronous execution

Use SYCL-OpenCL interoperability for callbacks

// future_data is a shared state of hpx::future
cl::sycl::queue queue =
future_data * ptr = ...;
cl_event marker;
clEnqueueMarkerWithWaitList (queue.get (), O, nullptr, &marker
)
clSetEventCallback (marker, CL_COMPLETE,
[J(cl_event, cl_int, void * ptr) {
marker_callback(static_cast<future_data*>(ptr));
}, ptr);

<

Downside

® not applicable for SYCL host device

17 of 29
| @ STE||AR GROUP

Non-standard layout datatypes

An example: standard C++ tuple
® common std: :tuple implementations, such as in libstdc++ or
libc++, are not C++11 standard layout due to multiple inheritance

B adding a non-standard implementation requires complex changes in
existing codebase

Approaches for other types

m refactor current solution to be C++ standard layout

® manually deconstruct the object and construct again in kernel
scope

® add serialization and deserialization interface to problematic types

® automatic serialization by the compiler - technique used in HCC

18 of 29
| @ STE||AR GROUP

Kernel naming

B two-tier compilation needs to link kernel code and invocation
® name has to be unique
breaks the standard API for STL algorithms

different extensions to C++ may solve this problem®

19 05 fbronos's OpenCL SYCL to support Heterogeneous Devices for C++ - Wong, M. et al. - P0236R0

@ STE||AR GROUP

Named execution policy

B execution policy contains the name

® use the type of function object if no name is provided
® used in ParallelSTL project®

A SYCL named execution policy
struct DefaultKernelName {};

template <class KernelName = DefaultKernelName>
class sycl_execution_policy {

};

20 : ftps: //github.com/KhronosGroup/SyclParallelSTL/
| @ STE||AR GROUP

https://github.com/KhronosGroup/SyclParallelSTL/

Named execution policy

B execution policy contains the name
® yse the type of function object if no name is provided
® used in ParallelSTL project®

Cons:

® no logical connection between execution policy and kernel name

® duplicating std: : par execution policy

20 : ftps: //github.com/KhronosGroup/SyclParallelSTL/
| @ STE||AR GROUP

https://github.com/KhronosGroup/SyclParallelSTL/

Named execution policy

Our solution: executor parameters

®m an HPX extension to proposed concepts for executors
® 3 set of configuration options to control execution

® control settings which are independent from the actual executor
type
m example: OpenMP-like chunk sizes

Pass kernel name as a parameter
// uses default executor: par
hpx::parallel::for_each(
hpx::parallel::par.with(
hpx::parallel::kernel_name<class Name>()

),

);

21 of 29

| @ STE||AR GROUP

Plan

Benchmarking

21 of 29

| @ STE||AR GROUP

Benchmarking hardware for STREAM

Khronos SYCL

® GPU: AMD Radeon R9 Fury Nano
= ComputeCPP: CommunityEdition-0.1.1
®= OpenCL: AMD APP SDK 2.9

GPU-STREAM has been used to measure SYCL performance:
https://github.com/UoB-HPC/GPU-STREAM

22 of 29

| @ STE||AR GROUP

https://github.com/UoB-HPC/GPU-STREAM

-
STREAM

STREAM benchmark on 305 MB arrays

a0 e e
w300 1
oM
O
= Oo HPX
5 200 1 |HDHPX without callbacks
3 0o SYCL
5
@ 100 .
0 T T

I I
Scale Copy Add Triad

23 of 29
| O STE||AR GROUP

STREAM
STREAM scaling with size
E\\HH‘ UL T T TITIT T T TITIT0 T T TTTIT0 T \\\HE
— 100} E
Q) k |
m []
O L |
£ 10] 1 HPX
5 £ 1| —=— HPX without callbacks
2 8 1 —— SYCL
S | |
s 1f E
Ol bewd vl v

0.01 0.1 1 10 100
Array size (MB)

24 of 29

| @ STE||AR GROUP

Plan

Summary

24 of 29

| @ STE||AR GROUP

Summary

The Good

m performance and capabilities comparable with competing standards
® no requirement of marking functions capable of running on a device

B previous experiments revealed that an overhead of ComputeCpp, an
offline device compiler for SYCL, is not severe during build process

25 of 29

| @ STE||AR GROUP

Summary

The Bad

kernel names appearing in standard interface

troublesome capture of complex types storing SYCL buffers

lack of explicit data movement

limited support for SPIR on modern GPUs

26 of 29

| @ STE||AR GROUP

Summary

The Ugly

® asynchronous callbacks work but with a slight overhead
m SYCL pointer types can not be treated as iterators

® troublesome capture of non-standard layout types

27 of 29

| @ STE||AR GROUP

Future

Goals

® demonstrate a complex problem solved over host and GPU with
our model and STL algorithms

® extend implementation with more algorithms

Challenges

® how to express on-chip/local memory through our model?

B try to reduce overhead for shorter kernels

28 of 29

| @ STE||AR GROUP

Thanks for your attention

mcopik@gmail.com

29 of 29

| @ STE||AR GROUP

	HPX
	Concepts

	HPX.Compute
	Challenges
	Benchmarking
	Summary
	Goals

