
Conference title 1

Dana Schaa, Rafael Ubal

Northeastern University
Boston, MA

Multi2Sim 4.1

Multi-Architecture ISA-Level
Simulation of OpenCL

IWOCL Tutorial, May 2013 2

Introduction

Simulation methodology

Part 1 – Simulation of an x86 CPU

Emulation

Timing simulation

Memory hierarchy

Visualization tool

OpenCL on the host

Part 2 – Simulation of a Southern Islands GPU

OpenCL on the device

The Southern Islands ISA

The GPU architecture

Southern Islands simulation

Validation results

Improving heterogeneity

Concluding remarks

Outline

IWOCL Tutorial, May 2013 3

Introduction
Getting Started

$ ssh iwocl<N>@fusion1.ece.neu.edu -X
 Password: iwocl2013

• User accounts for demos

$ wget http://www.multi2sim.org/files/multi2sim-4.1.tar.gz
$ tar -xzf multi2sim-4.1.tar.gz
$ cd multi2sim-4.1
$./configure && make

• Installation of Multi2Sim

Follow our
demos!

IWOCL Tutorial, May 2013 4

Introduction
First Execution

#include <stdio.h>

int main(int argc, char **argv)
{

int i;
printf("Number of arguments: %d\n", argc);
for (i = 0; i < argc; i++)

printf("\targv[%d] = %s\n", i, argv[i]);
return 0;

}

Demo 1

$ test-args hello there

Number of arguments: 4
 arg[0] = 'test-args'
 arg[1] = 'hello'
 arg[2] = 'there'

$ m2s test-args hello there

< Simulator message in stderr >
Number of arguments: 4
 arg[0] = 'test-args'
 arg[1] = 'hello'
 arg[2] = 'there'
< Simulator statistics >

• Source code

• Native execution • Execution on Multi2Sim

IWOCL Tutorial, May 2013 5

; This is a comment.

[Section 0]
Color = Red
Height = 40

[OtherSection]
Variable = Value

Introduction
Simulator Input/Output Files

• Example of INI file format

• Multi2Sim uses INI file for
─ Configuration files.
─ Output statistics.
─ Statistic summary in standard error output.

IWOCL Tutorial, May 2013 6

Simulation Methodology
Application-Only vs. Full-System

Virtual izat ion of
 User-space subset of ISA
 System call interface

Full-system
simulator core

Application-only
simulator core

Guest
program 1

Guest
program 2

Full O.S.

Guest
program 1

Guest
program 2

... ...

Virtualizat ion of
 Complete processor ISA
 I/O hardware

• Full-system simulation

An entire OS runs on top of the simulator.
The simulator models the entire ISA, and
virtualizes native hardware devices, similar
to a virtual machine. Very accurate
simulations, but extremely slow.

• Application-only simulation

Only an application runs on top of the
simulator. The simulator implements a
subset of the ISA, and needs to virtualize
the system call interface (ABI). Multi2Sim
falls in this category.

IWOCL Tutorial, May 2013 7

Simulation Methodology
Four-Stage Simulation Process

• Modular implementation
─ Four clearly different software modules per architecture (x86, MIPS, ...)
─ Each module has a standard interface for stand-alone execution, or

interaction with other modules.

Disassembler

● Executable
● Executable
● Arguments

● Executable
● Arguments
● Configuration ● User

● ISA disassembly ● Program output ● Performance
 statistics

● Timing diagrams

Instruction
bytes

Instruction
fields

Run one
Instruction!

Instruction
fields

Pipeline
trace

Functional
simulator

(or emulator)

Detailed
simulator

(or timing/
architectural

simulator)

Visual
tool

IWOCL Tutorial, May 2013 8

Simulation Methodology
Current Architecture Support

Disasm. Emulation Timing
Simulation

Graphic
Pipelines

ARM X In progress – –

MIPS X – – –

x86 X X X X

AMD Evergreen X X X X

AMD Southern Islands X X X X

NVIDIA Fermi X In progress – –

• Available in Multi2Sim 4.1
─ Evergreen, Southern Islands, and x86 fully supported.
─ Three other CPU/GPU architectures in progress.
─ This tutorial will focus on x86 and Southern Islands.

IWOCL Tutorial, May 2013 9

Part 1

Simulation of an
x86 CPU

IWOCL Tutorial, May 2013 10

Stack
Program args.
Env. variables

0x08000000

Initial virtual
memory image

of context

mmap region
(not initialized)

Heap
Initialized data

Text
Initialized data

0x08xxxxxx

0x40000000

0xc0000000

Initial values
for x86

registers

eax

ebx

eax

ecx

esp

eip

In
it

ia
liz

e
d

in
st

ru
ct

io
n
 p

o
in

te
r

To
p

 o
f

st
a
ck

Emulation of an x86 CPU
Program Loading

• Initialization of a process state 1) Parse ELF executable
─ Read ELF sections and symbols.
─ Initialize code and data.

2) Initialize stack
─ Program headers.
─ Arguments.
─ Environment variables.

3) Initialize registers
─ Program entry → eip
─ Stack pointer → esp

IWOCL Tutorial, May 2013 11

Read instr.
at eip

Instr.
bytes

Decode
instruction

Instr.
fields

Instr. is
int 0x80

No Yes

Emulate
system call

Emulate
x86 instr.

Move eip
to next instr.

Emulation of an x86 CPU
Emulation Loop

• Emulation of x86 instructions
─ Update x86 registers.
─ Update memory map if needed.
─ Example: add [bp+16], 0x5

• Emulation of Linux system calls
─ Analyze system call code and arguments.
─ Update memory map.
─ Update register eax with return value.
─ Example: read(fd, buf, count)

Demo 2

IWOCL Tutorial, May 2013 12

Fetch

Instr.
Cache

Fetch queue

Dispatch

· · ·
Reorder Buffer

· · ·

· · ·
Instruction Queue

· · ·
Load/Store Queue Issue

Commit

Data
Cache

Register
File

FU
Trace queue

· · ·

Trace
Cache

Decode
μop queue

· · ·

Writeback

Timing Simulation of an x86 CPU
Superscalar Processor

• Superscalar x86 pipelines

─ 6-stage pipeline with configurable latencies.

─ Supported features include speculative execution, branch prediction, micro-
instruction generation, trace caches, out-of-order execution, …

─ Modeled structures include fetch queues, reorder buffer, load-store queues,
register files, register mapping tables, ...

IWOCL Tutorial, May 2013 13

Timing Simulation of an x86 CPU
Multithreaded and Multicore Processors

• Multicore
─ Fully replicated superscalar pipelines, communicating through the memory

hierarchy.
─ Parallel architectures can run multiple programs concurrently, or one program

spawning child threads (using OpenMP, pthread, etc.)

• Multithreading
─ Replicated superscalar pipelines with partially shared resources.
─ Fine-grain, coarse-grain, and simultaneous multithreading.

Fetch

Instr.
Cache

Dispatch

· · ·
· · ·

· · ·

· · ·
Issue

Commit

Data
Cache

Register
File

FU· · ·

Trace
Cache

Decode · · ·

Writeback

Fetch

Instr.
Cache

Dispatch

· · ·
· · ·

· · ·

· · ·
Issue

Commit

Data
Cache

Register
File

FU· · ·

Trace
Cache

Decode · · ·

Writeback

Fetch

Instr.
Cache

Dispatch

· · ·
· · ·

· · ·

· · ·
Issue

Commit

Data
Cache

Register
File

FU· · ·

Trace
Cache

Decode · · ·

Writeback

Demo 3

IWOCL Tutorial, May 2013 14

The Memory Hierarchy
Configuration

• Flexible hierarchies

─ Any number of caches organized in any number of levels.

─ Cache levels connected through default cross-bar interconnects, or complex
custom interconnect configurations.

─ Each architecture undergoing a timing simulation specifies its own
entry point (cache memory) in the memory hierarchy, for data or
instructions.

─ Cache coherence is guaranteed with an implementation of the 5-state
MOESI protocol.

IWOCL Tutorial, May 2013 15

The Memory Hierarchy
Configuration Examples

Example 1

Three CPU cores with private
L1 caches, two L2 caches,
and default cross-bar based
interconnects. Cache L2-0
serves physical address range
[0, 7ff...ff], and cache L2-1
serves [80...00, ff...ff].

Core 0 Core 1 Core 2

L1-0 L1-1 L1-2

Switch

L2-0 L2-1

Switch

Main Memory

Demo 4

IWOCL Tutorial, May 2013 16

Example 2

Four CPU cores with private
L1 data caches, L1 instruction
caches and L2 caches shared
every 2 cores (serving the
whole address space), and
four main memory modules,
connected with a custom
network on a ring topology.

Data
L1-0

Core 0 Core 1

Data
L1-1

Switch

L2-0 L2-1

sw1 sw2sw0 sw3

MM-0 MM-1 MM-2 MM-3

Inst.
L1-0

Switch

Data
L1-2

Core 2 Core 3

Data
L1-3

Inst.
L1-1

n0

n2 n3 n4 n5

n1

The Memory Hierarchy
Configuration Examples

IWOCL Tutorial, May 2013 17

s3

s0 s1

s2

n0 n1

n2n3

Example 3

Ring connection between four
switches associated with end-nodes
with routing tables calculated
automatically based on shortest
paths. The resulting routing
algorithm can contain cycles,
potentially leading to routing
deadlocks at runtime.

The Memory Hierarchy
Configuration Examples

IWOCL Tutorial, May 2013 18

n3

s1

s2s3

s0 n1

n2

n0

Virtual
Channel 0

Virtual
Channel 1

Example 4

Ring connection
between for switches
associated with end
nodes, where a routing
cycle has been
removed by adding an
additional virtual
channel.

The Memory Hierarchy
Configuration Examples

IWOCL Tutorial, May 2013 19

Pipeline Visualization Tool
Pipeline Diagrams

─ Cycle bar on main window for navigation.

─ Panel on main window shows software contexts mapped to hardware cores.

─ Clicking on the Detail button opens a secondary window with a pipeline diagram.

IWOCL Tutorial, May 2013 20

Pipeline Visualization Tool
Memory Hierarchy

─ Panel on main window shows how memory
accesses traverse the memory hierarchy.

─ Clicking on a Detail button opens a
secondary window with the cache memory
representation.

─ Each row is a set, each column is a way.

─ Each cell shows the tag and state (color)
of a cache block.

─ Additional columns show the number of
sharers and in-flight accesses.

Demo 5

IWOCL Tutorial, May 2013 21

OpenCL on the Host
Execution Framework

─ Multi2Sim 4.1 includes a new execution framework for OpenCL,
developed in collaboration with University of Toronto.

─ The new framework is a more accurate analogy to a native execution, and is
fully AMD-compliant.

─ When working with x86 kernel binaries, the OpenCL runtime can perform
both native and simulated execution correctly.

─ When run natively, an OpenCL call to clGetDeviceIDs returns only the
x86 device.

─ When run on Multi2Sim, clGetDeviceIDs returns one device per
supported architecture: x86, Evergreen, and Southern Islands devices
(more to be added).

IWOCL Tutorial, May 2013 22

OpenCL on the Host
Execution Framework

─ The following slides show the modular organization of the OpenCL
execution framework, based on 4 software/hardware entities.

─ In each case, we compare native execution (left) with
simulated execution (right).

IWOCL Tutorial, May 2013 23

OpenCL on the Host
The OpenCL CPU Host Program

Native
An x86 OpenCL host program performs
an OpenCL API call.

Multi2Sim
Exact same scenario.

IWOCL Tutorial, May 2013 24

OpenCL on the Host
The OpenCL Runtime Library

Native
AMD's OpenCL runtime library handles
the call, and communicates with the
driver through system calls ioctl, read,
write, etc. These are referred to as ABI
calls.

Multi2Sim
Multi2Sim's OpenCL runtime library,
running with guest code, transparently
intercepts the call. It communicates with
the Multi2Sim driver using system calls
with codes not reserved in Linux.

IWOCL Tutorial, May 2013 25

OpenCL on the Host
The OpenCL Device Driver

Native
The AMD Catalyst driver (kernel module)
handles the ABI call and communicates
with the GPU through the PCIe bus.

Multi2Sim
An OpenCL driver module (Multi2Sim
code) intercepts the ABI call and
communicates with the GPU emulator.

IWOCL Tutorial, May 2013 26

OpenCL on the Host
The GPU Emulator

Native
The command processor in the GPU
handles the messages received from the
driver.

Multi2Sim
The GPU emulator updates its internal
state based on the message received
from the driver.

IWOCL Tutorial, May 2013 27

OpenCL on the Host
Transferring Control

• Beginning execution on the GPU

─ The key OpenCL call that effectively triggers GPU execution is
clEnqueueNDRangeKernel.

• Order of events

─ The host program performs API call clEnqueueNDRangeKernel.

─ The runtime intercepts the call, and enqueues a new task in an OpenCL
command queue object. A user-level thread associated with the command
queue eventually processes the command, performing a LaunchKernel ABI call.

─ The driver intercepts the ABI call, reads ND-Range parameters, and launches
the GPU emulator.

─ The GPU emulator enters a simulation loop until the ND-Range completes.

IWOCL Tutorial, May 2013 28

Need a
break?

IWOCL Tutorial, May 2013 29

Part 2

Simulation of a
Southern Islands GPU

IWOCL Tutorial, May 2013 30

OpenCL on the Device
Execution Model

• Execution components
─ Work-items execute multiple instances of the same kernel code.
─ Work-groups are sets of work-items that can synchronize and

communicate efficiently.
─ The ND-Range is composed by all work-groups, not communicating with

each other and executing in any order.

Work-
group

Work-
group

···

···

Work-
group

···

Global Memory

Work-
group

Work-
item

Work-
item

···

···

Work-
item

···

Global Memory

Work-
item

···
__kernel func()
{

}

Private Memory

ND-Range Work-Group Work-Item

IWOCL Tutorial, May 2013 31

OpenCL on the Device
Execution Model

• Software-hardware mapping
─ When the kernel is launched by the Southern Islands driver, the OpenCL

ND-Range is mapped to the compute device (Fig. a).
─ The work-groups are mapped to the compute units (Fig. b).
─ The work-items are executed by the SIMD lanes (Fig. c).

─ This is a simplification of the GPU architecture. The following slides show a
more detailed structure of a Southern Islands compute unit.

IWOCL Tutorial, May 2013 32

The Southern Islands ISA
Vector Addition Source

__kernel void vector_add(
 __read_only __global int *src1,
 __read_only __global int *src2,
 __write_only __global int *dst)
{
 int id = get_global_id(0);
 dst[id] = src1[id] + src2[id];
}

IWOCL Tutorial, May 2013 33

The Southern Islands ISA
Wavefront

• Up to 64 OpenCL work-item (software threads) are combined into a single
hardware thread called a wavefront

• A wavefront executes on a SIMD unit (single PC, different data per work-item)
─ An execution mask is used to mask results of inactive work-items

IWOCL Tutorial, May 2013 34

The Southern Islands ISA
Wavefront – Scalar Opportunities

• Sometimes all work-items in a wavefront will execute an instruction using the
same data

─ Loading the base address of a buffer
─ Incrementing/evaluating loop counters
─ Loading constant values)

• To optimize for these scenarios, AMD separates scalar instructions from vector
instructions in their ISA

─ Scalar instructions execute on a new hardware unit called the scalar unit

IWOCL Tutorial, May 2013 35

The Southern Islands ISA
Disassembly for Vector Addition Kernel

 s_buffer_load_dword s0, s[4:7], 0x04 // 00000000: C2000504
 s_buffer_load_dword s1, s[4:7], 0x18 // 00000004: C2008518
 s_buffer_load_dword s4, s[8:11], 0x00 // 00000008: C2020900
 s_buffer_load_dword s5, s[8:11], 0x04 // 0000000C: C2028904
 s_buffer_load_dword s6, s[8:11], 0x08 // 00000010: C2030908
 s_load_dwordx4 s[8:11], s[2:3], 0x58 // 00000014: C0840358
 s_load_dwordx4 s[16:19], s[2:3], 0x60 // 00000018: C0880360
 s_load_dwordx4 s[20:23], s[2:3], 0x50 // 0000001C: C08A0350
 s_waitcnt lgkmcnt(0) // 00000020: BF8C007F
 s_min_u32 s0, s0, 0x0000ffff // 00000024: 8380FF00 0000FFFF
 v_mov_b32 v1, s0 // 0000002C: 7E020200
 v_mul_i32_i24 v1, s12, v1 // 00000030: 1202020C
 v_add_i32 v0, vcc, v0, v1 // 00000034: 4A000300
 v_add_i32 v0, vcc, s1, v0 // 00000038: 4A000001
 v_lshlrev_b32 v0, 2, v0 // 0000003C: 34000082
 v_add_i32 v1, vcc, s4, v0 // 00000040: 4A020004
 v_add_i32 v2, vcc, s5, v0 // 00000044: 4A040005
 v_add_i32 v0, vcc, s6, v0 // 00000048: 4A000006
 tbuffer_load_format_x v1, v1, s[8:11], 0 offen format:
 [BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT] // 0000004C: EBA01000 80020101
 tbuffer_load_format_x v2, v2, s[16:19], 0 offen format:
 [BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT] // 00000054: EBA01000 80040202
 s_waitcnt vmcnt(0) // 0000005C: BF8C1F70
 v_add_i32 v1, vcc, v1, v2 // 00000060: 4A020501
 tbuffer_store_format_x v1, v0, s[20:23], 0 offen format:
 [BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT] // 00000064: EBA41000 80050100
 s_endpgm // 0000006C: BF810000

IWOCL Tutorial, May 2013 36

The Southern Islands ISA
Instruction Set Features

• AMD 6000-series GPUs (Northern Islands) had 1 SIMD with 16 4-way VLIW lanes
per compute unit

─ 64 lanes total per compute unit

• AMD 7000-series GPUs (Southern Islands) have 4 SIMDs, each with 16-lanes,
per compute unit

─ Still 64 lanes total per compute unit

IWOCL Tutorial, May 2013 37

The GPU Architecture
Instruction Set Features

• Each compute unit has 4 wavefront pools (our term) where allocated
wavefronts reside

─ Each wavefront pool is associated with one SIMD

• Each cycle, wavefronts from one wavefront pool are considered
─ One instruction from up to 5 wavefronts can be issued per datapath
─ One instruction can be issued per datapath

IWOCL Tutorial, May 2013 38

The GPU Architecture
Instruction Set Features

• Simulated datapaths are:
─ Vector ALU (SIMD)
─ Vector memory (global memory)
─ Scalar unit (ALU and scalar memory)
─ Branch unit
─ LDS unit (local memory)

IWOCL Tutorial, May 2013 39

─ The instruction memory of each compute unit contains a copy of the OpenCL
kernel.

─ A front-end fetches instructions, partly decodes them, and sends them to the
appropriate execution unit.

─ There is one instance of the following execution units: scalar unit, vector-memory
unit, branch unit, LDS (local data store) unit.

─ There are multiple instances of SIMD units.

The GPU Architecture
Compute Unit

IWOCL Tutorial, May 2013 40

─ Work-groups are allocated to 4 different wavefront pools. Each wavefront from a
work-group is assigned a slot in the wavefront pool.

─ Each cycle, the fetch stage allows one wavefront pool to submit requests to
instruction memory

─ The issue stage consumes an instructions from one fetch buffer and sends it to the
corresponding execution unit's issue buffer, depending on the instruction type.

The GPU Architecture
The Front-End

IWOCL Tutorial, May 2013 41

─ Runs arithmetic-logic vector instructions.

─ There are 4 SIMD units, each one associated with one of the 4 wavefront pools.

─ The SIMD unit pipeline is modeled with 5 stages: decode, read, execute, write, and
complete.

─ In the execute stage, a wavefront (64 work-items max.) is split into 4
subwavefronts (16 work-items each). Subwavefronts are pipelined over the 16
stream cores in 4 consecutive cycles.

─ The vector register file is accessed in the read and write stages to consume input
and produce output operands, respectively.

The GPU Architecture
The SIMD Unit

IWOCL Tutorial, May 2013 42

The GPU Architecture
The SIMD Unit

IWOCL Tutorial, May 2013 43

Southern Islands Simulation
Functional Simulation

Demo 6

• Sets up the memory image

• Runs one work-group at a time to completion
─ Emulates instructions and updates registers and memory

• Produces some limited statistics
─ Number of executed ND-Ranges and work-groups
─ Dynamic instruction mix of the ND-Range

• Produces an ISA trace
─ Listing memory image initialization
─ Instruction emulation trace

IWOCL Tutorial, May 2013 44

Southern Islands Simulation
Architectural Simulation

• Models compute units and the memory hierarchy

• Maps work-groups onto compute units and wavefront pools

• Emulates instructions and propagates state through the execution pipelines
─ Models resource usage and contention

IWOCL Tutorial, May 2013 45

Southern Islands Simulation
Architectural Simulation

• Fully configurable via configuration files
─ Number of compute units
─ Number of each execution unit (e.g. SIMDs) per compute unit
─ Latencies of pipeline stages
─ Memory modules and cache hiearchy

• Levels, banks, sets, associativity, line size, read/write ports,
interconnect network, link bandwidths, etc.

─ Issue policy (oldest instruction first, greedy)

• Configuration files are provided with Multi2Sim that model existing GPU models
─ Provided in: multi2sim/samples/southern-islands
─ 7970, 7870, 7850, 7770 are available

IWOCL Tutorial, May 2013 46

Southern Islands Simulation
Architectural Simulation

Command Processor

Ultra-Threaded Dispatcher

Compute
Unit 0

Compute
Unit 1

Compute
Unit 31···

L1
Cache

L1
Cache

L1
Cache···

Crossbar

Main Memory Hierarchy
(L2 caches, memory controllers,

video memory)

IWOCL Tutorial, May 2013 47

Southern Islands Simulation
Visualization Tool

Demo 7

• Step through program execution

• View in-flight state of pipelines an memory hierarchy

IWOCL Tutorial, May 2013 48

Southern Islands Simulation
Memory Hierarchy

• Fully configurable DRAM and cache modules, based on a 7970 GPU by default
─ 16KB data L1s (per compute unit)
─ Separate scalar L1s (shared by 4 compute units)
─ 6 banks of 128KB L2 (per GPU)
─ L1-to-L2 all-to-all crossbar
─ L2s to DRAM modules

• Cache hiearchy based on 3-state protocol (NSI)
─ N is non-exclusive, modified (similar to Delayed Consistency)

IWOCL Tutorial, May 2013 49

Southern Islands Simulation
Memory Hierarchy

• APU design is possible with caches sharing a single protocol (NMOESI)

IWOCL Tutorial, May 2013 50

Validation Results
Methodology

• Single wavefront
─ Instruction scheduling

• Multiple wavefronts
─ Scheduling
─ Instruction issue
─ Resource sharing (e.g., SIMD unit)

IWOCL Tutorial, May 2013 51

Validation Results
Single Wavefront

IWOCL Tutorial, May 2013 52

Validation Results
Single Wavefront

IWOCL Tutorial, May 2013 53

Validation Results
Multiple Wavefronts

IWOCL Tutorial, May 2013 54

Validation Results
Multiple Wavefronts

IWOCL Tutorial, May 2013 55

Validation Results
Multiple Wavefronts

IWOCL Tutorial, May 2013 56

CU
0

...
CU
1

GPU

Core
0

Core
1

...

CPU

WG-1 WG-2 WG-N...

ND-Range (set of work-groups)

WG-1 WG-2 WG-N...

ND-Range (set of work-groups)

O
r

a
lt

e
rn

a
ti

v
e
ly

• An OpenCL ND-Range runs entirely on one device
• Scheduling done manually by programmer

Improving Heterogeneity
Current OpenCL model

IWOCL Tutorial, May 2013 57

CU
0

CU
1

Core
0

Core
1

CU
2

CU
3

T
im

e

OpenCL
host

Idle OpenCL
kernel

Heterogeneous CPU-GPU device

• Only GPU compute units run the OpenCL ND-Range
• CPU cores stay idle, unless programmer provides them with work

Improving Heterogeneity
Current OpenCL model

IWOCL Tutorial, May 2013 58

WG-1 WG-2 WG-N...

ND-Range (set of work-groups)

CU
0

...
CU
1

GPU

Core
0

Core
1

...

CPU

Improving Heterogeneity
Proposed Enhancement

• Allow multiple devices to execute the same ND-Range
• Automatic distribution of work-groups by the runtime

IWOCL Tutorial, May 2013 59

CU
0

CU
1

Core
0

Core
1

CU
2

CU
3

T
im

e

OpenCL
host +
kernel

OpenCL
kernel

Heterogeneous CPU-GPU device

Idle

Improving Heterogeneity
Proposed Enhancement

• All devices run the ND-Range (higher resource utilization)
• Complex cores contribute to reduce the execution time

IWOCL Tutorial, May 2013 60

• Why hasn't this been done already?
─ Impractical with discrete GPU + CPU

• Combining sparsely modified buffers from multiple distributed
memories

• Imbalance of processing power

• What's changed?
─ Low-power, shared memory CPU + GPU (i.e., APUs)

• Removes challenge of combining results
• Processors have more similar processing capability

• What are the benefits?
─ Programmer does not need to predict load ahead of time
─ The device better suited for execution will automatically run more work

groups

Improving Heterogeneity
Proposed Enhancement

IWOCL Tutorial, May 2013 61

• Why Multi2Sim?
─ The complete tool-chain is implemented!

• OpenCL runtime implementation allows extensions to be added

• Device driver model allows scheduler to be implemented

• Memory and cache models allow
─ Coherent memory hierarchies
─ Common physical and virtual address spaces

• Emulator/simulator allows work groups to be processed individually instead of
only ND-Ranges

Improving Heterogeneity
Proposed Enhancement

IWOCL Tutorial, May 2013 62

Concluding Remarks

The Multi2Sim
Community

IWOCL Tutorial, May 2013 63

The Multi2Sim Community
Additional Material

• The Multi2Sim Guide
─ Complete documentation of the simulator's user interface, simulation

models, and additional tools.

• Multi2Sim forums and mailing list
─ New version releases and other important information is posted on the

Multi2Sim mailing list (no spam, 1 email per month).
─ Users share question and knowledge on the website forum.

• M2S-Cluster
─ Automatic verification framework for Multi2Sim.
─ Based on a cluster of computers running condor.

• The Multi2Sim OpenCL compiler – new!
─ LLVM-based compiler for GPU kernels written in OpenCL C.
─ Front-ends for CUDA and OpenCL in progress.
─ Back-ends for Fermi, Kepler, and Southern Islands in progress.
─ Back-ends accessible through stand-alone assemblers.

IWOCL Tutorial, May 2013 64

The Multi2Sim Community
Academic Efforts at Northeastern

• The “GPU Programming and Architecture” course
─ We started an unofficial seminar that students can voluntarily attend. The

syllabus covers OpenCL programming, GPU architecture, and state-of-the-
art research topics on GPUs.

─ Average attendance of ~25 students per semester.

• Undergraduate directed studies
─ Official alternative equivalent to a 4-credit course that an undergraduate

student can optionally enroll in, collaborating in Multi2Sim development.

• Graduate-level development
─ Lots of research projects at the graduate level depend are based on

Multi2Sim, and selectively included in the development trunk for public
access.

─ Simulation of OpenGL pipelines, support for new CPU/GPU architectures,
among others.

IWOCL Tutorial, May 2013 65

The Multi2Sim Community
Collaborating Research Groups

• Universidad Politécnica de Valencia
─ Pedro López, Salvador Petit, Julio Sahuquillo, José Duato.

• Northeastern University
─ Chris Barton, Shu Chen, Zhongliang Chen, Tahir Diop, Xiang Gong, David

Kaeli, Nicholas Materise, Perhaad Mistry, Dana Schaa, Rafael Ubal, Mark
Wilkening, Ang Shen, Tushar Swamy, Amir Ziabari.

• University of Mississippi
─ Byunghyun Jang

• NVIDIA
─ Norm Rubin

• University of Toronto
─ Jason Anderson, Natalie Enright, Steven Gurfinkel, Tahir Diop.

• University of Texas
─ Rustam Miftakhutdinov

IWOCL Tutorial, May 2013 66

The Multi2Sim Community
Multi2Sim Academic Publications

• Conference papers
─ Multi2Sim: A Simulation Framework to Evaluate Multicore-Multithreaded

Processors, SBAC-PAD, 2007.
─ The Multi2Sim Simulation Framework: A CPU-GPU Model for Heterogeneous

Computing, PACT, 2012.

• Tutorials
─ The Multi2Sim Simulation Framework: A CPU-GPU Model for Heterogeneous

Computing, PACT, 2011.
─ Programming and Simulating Fused Devices — OpenCL and Multi2Sim, ICPE,

2012.
─ Multi-Architecture ISA-Level Simulation of OpenCL, IWOCL, 2013.

─ Simulation of OpenCL and APUs on Multi2Sim, ISCA, 2013. ← Upcoming!

IWOCL Tutorial, May 2013 67

The Multi2Sim Community
Published Academic Works Using Multi2Sim

• Recent
─ R. Miftakhutdinov, E. Ebrahimi, Y. Patt, Predicting Performance Impact of

DVFS for Realistic Memory Systems, MICRO, 2012.
─ D. Lustig, M. Martonosi, Reducing GPU Offload Latency via Fine-Grained

CPU-GPU Synchronization, HPCA, 2013.

• Other
─ H. Calborean, R. Jahr, T. Ungerer, L. Vintan, A Comparison of Multi-objective

Algorithms for the Automatic Design Space Exploration of a Superscalar
System, Advances in Intelligent Systems and Computing, vol. 187.

─ X. Li, C. Wang, X. Zhou, Z. Zhu, Cache Promotion Policy Using Re-reference
Interval Prediction, CLUSTER, 2012.

─ … and 62 more citations, as per Google Scholar.

Conference title 68

Dana Schaa, Rafael Ubal

Northeastern University
Boston, MA

Multi2Sim 4.1

Multi-Architecture ISA-Level
Simulation of OpenCL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

