
Parallelization of the Shortest Path Graph
Kernel on the GPU

Lifan Xu Wei Wang

Marco A. Alvarez John Cavazos

Department of Computer and Information Science

University of Delaware

Outline

• Introduction

– Graph

– Graph similarity and graph kernel

– Shortest Path Graph Kernel

• Parallelization on GPU and CPU

– Four GPU implementations

– One OpenMP implementation

• Experiments results

– Synthetic datasets

– Scientific datasets

• Conclusion and Future Work

1

Outline

• Introduction

– Graph

– Graph similarity and graph kernel

– Shortest Path Graph Kernel

• Parallelization on GPU and CPU

– Four GPU implementations

– One OpenMP implementation

• Experiments results

– Synthetic datasets

– Scientific datasets

• Conclusion and Future Work

2

Graph

• A graph G is a set of vertices V and edges E,
where E ⊂ V2

• A graph G may have labels on vertices and/or
edges

• The adjacency matrix A of G is defined as

𝑨𝑖𝑗 =
1 𝑖𝑓 𝑣𝑖, 𝑣𝑗 ∈ 𝑬
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3

Labelled Undirected Graphs

4

1
2

3

4

vertices

Labelled Undirected Graphs

5

1
2

3

4

1
2

3

4

vertices edges

Labelled Undirected Graphs

6

1
2

3

4

1
2

3

4

1
2

3

4

b

c

d

a

vertices edges labels

Labelled Undirected Graphs

7

1
2

3

4

1
2

3

4

1
2

3

4

b

c

d

a

vertices edges labels

 A =

0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

Outline

• Introduction

– Graph

– Graph similarity and graph kernel

– Shortest Path Graph Kernel

• Parallelization on GPU and CPU

– Four GPU implementations

– One OpenMP implementation

• Experiments results

– Synthetic datasets

– Scientific datasets

• Conclusion and Future Work

8

Graph Similarity

• How similar are two graphs?
– For Machine Learning problems like clustering and classification on graphs, graph similarity is crucial.

• Applications
– Protein function prediction

– Drug screening

– Documents classification (Junk mail?)

– Image classification

– Cyber security

• Challenges
– Graph isomorphism is NP-complete

– Graph comparison via isomorphism is prohibitively expensive

9

Graph Kernel

• To Calculate the similarities between two graphs in polynomial time

– Random Walk Kernel
• Compare all walks in two graphs G and G’

– Shortest Path Kernel
• Compare all pairs shortest paths for G and G’ via Floyd-Warshall

– Subtree Kernel
• Compare subtree-like patterns in two graphs G and G’

– Cyclic Pattern Kernel
• Compare simple cycles in two graphs G and G’

– Graphlet Kernel
• Count subgraphs of limited size K in G and G’

10

Outline

• Introduction

– Graph

– Graph similarity and graph kernel

– Shortest Path Graph Kernel

• Parallelization on GPU and CPU

– Four GPU implementations

– One OpenMP implementation

• Experiments results

– Synthetic datasets

– Scientific datasets

• Conclusion and Future Work

11

Shortest-Path Graph Kernel

• Convert graph to all pair shortest path graph
– Floyd-Warshall Algorithm

12

Floyd-Warshall

13
Original Graph Shortest Path Graph

Floyd-Warshall

14
Original Graph Shortest Path Graph

Shortest-Path Graph Kernel

• Apply shortest path kernel
– 𝐾𝑠𝑝 𝐺, 𝐺′ = 𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′)𝑒′∈𝐸′𝑒∈𝐸

15

Shortest-Path Graph Kernel

• Apply shortest path kernel
– 𝐾𝑠𝑝 𝐺, 𝐺′ = 𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′)𝑒′∈𝐸′𝑒∈𝐸

– 𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′) = 𝐾𝑛𝑜𝑑𝑒(𝑢, 𝑢′) ∙ 𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′) ∙ 𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′)

16

Shortest-Path Graph Kernel

• Apply shortest path kernel
– 𝐾𝑠𝑝 𝐺, 𝐺′ = 𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′)𝑒′∈𝐸′𝑒∈𝐸

– 𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′) = 𝐾𝑛𝑜𝑑𝑒(𝑢, 𝑢′) ∙ 𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′) ∙ 𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′)

– 𝐾𝑛𝑜𝑑𝑒 is a valid kernel function for comparing two vertices

– 𝐾𝑒𝑑𝑔𝑒 is a valid kernel function for comparing two edges

17

Shortest Path Graph Kernel

18

• Lines 4-5 loop through
all paths in G1

Shortest Path Graph Kernel

19

• Lines 4-5 loop through
all paths in G1

• Lines 6-7 loop through
all paths in G2

Shortest Path Graph Kernel

20

• Lines 4-5 loop through
all paths in G1

• Lines 6-7 loop through
all paths in G2

• Line 8 calculates
𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′)

Shortest Path Graph Kernel

21

• Lines 4-5 loop through
all paths in G1

• Lines 6-7 loop through
all paths in G2

• Line 8 calculates
𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′)

• Lines 10-11 calculate
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′)

Shortest Path Graph Kernel

22

• Lines 4-5 loop through
all paths in G1

• Lines 6-7 loop through
all paths in G2

• Line 8 calculates
𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′)

• Lines 10-11 calculate
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′)

• Line 12 calculates
𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′)

Outline

• Introduction

– Graph

– Graph similarity and graph kernel

– Shortest Path Graph Kernel

• Parallelization on GPU and CPU

– Four GPU implementations

– One OpenMP implementation

• Experiments results

– Synthetic datasets

– Scientific datasets

• Conclusion and Future Work

23

Problem to be solved

• Given a set of graphs {g1, g2,…,gn }

• Calculate the kernel matrix Knxn

• K(i,j) is the similarity between gi and gj

24

Outline

• Introduction

– Graph

– Graph similarity and graph kernel

– Shortest Path Graph Kernel

• Parallelization on GPU and CPU

– Four GPU implementations

– One OpenMP implementation

• Experiments results

– Synthetic datasets

– Scientific datasets

• Conclusion and Future Work

25

GPU Naive1

• Calculate the whole kernel matrix Knxn in GPU at once

– One GPU thread calculate one element in kernel
matrix Knxn

– # of GPU threads is n2

26

Drawbacks of Naive1

• May not have enough GPU memory for large data set

– 3GB global memory on Nvidia Tesla C2050

• GPU threads may have different workload due to
different graph sizes

– Load balancing

– Branch divergence

• Works good if all graphs are small and have the same
size

 27

GPU Naive2

• Calculate similarity between one pair in GPU
at a time
– One GPU thread takes one entry in Shortest Path

Adjacency Matrix of one input graph

– # of GPU thread equals to the size of Shortest Path
Adjacency Matrix of one input graph

– If there is one edge, then loop through all entries in the
other Shortest Path Adjacency Matrix

28

Drawbacks of Naive2

• Waste of GPU resources

– May have idle threads
because 0 and INF in
Shortest Path Adjacency
Matrix

• Slow Memory access

– Random, non-coalesced
memory access pattern

29

0 1 2

0 0 1

0 0 0

Shortest Path Adjacency Matrix

Data Transformation

• Transform Shortest Path Adjacency Matrix to
three arrays with length equals to number of
shortest paths

– SP_W to store the weight of each path

– SP_S to store the starting node of each path

– SP_E to store the ending node of each path

30

31

0 1 2

0 0 1

0 0 0

Shortest Path Adjacency Matrix

32

0 1 2

0 0 1

0 0 0

Shortest Path Adjacency Matrix

1 2 1

0 0 1

1 2 2

SP_W

SP_S

SP_E

Advanced GPU Implementation

• Pre-calculation of Knode using Vertex Kernel

• Calculate Kwalk uisng Edge Kernel

• Apply Reduction Kernel to sum the results

33

34

Input graphs

35

Input graphs

Adjacency matrix

36

Input graphs

Adjacency matrix

Shortest Path Adjacency matrix

37

Input graphs

Adjacency matrix

Shortest Path Adjacency matrix

Vertex Kernel

38

Input graphs

Adjacency matrix

Shortest Path Adjacency matrix

Vertex Kernel

Edge Kernel

Advantage and Disadvantage of Adv.
Implementation

• Advantage

– No branch divergence

– Coalesced memory access

• Disadvantage

– Waste of GPU resource when graphs are small

39

Hybrid Implementation

• Combine Naive1 and Advanced

• Sort the input graphs according to their sizes

• Set a threshold for the graph size

– For graphs with sizes smaller than threshold, use
Naive1

– Otherwise, use Advanced

40

Outline

• Introduction

– Graph

– Graph similarity and graph kernel

– Shortest Path Graph Kernel

• Parallelization on GPU and CPU

– Four GPU implementations

– One OpenMP implementation

• Experiments results

– Synthetic datasets

– Scientific datasets

• Conclusion and Future Work

41

OpenMP Implementation

• Convert the top triangle of the kernel matrix
to a 1D array

• Create as many OpenMP threads as number
of CPU cores

• Each OpenMP thread calculates one entry in
the 1D array in order, goes to next iteration
until all entries are computed

42

Outline

• Introduction

– Graph

– Graph similarity and graph kernel

– Shortest Path Graph Kernel

• Parallelization on GPU and CPU

– Four GPU implementations

– One OpenMP implementation

• Experiments results

– Synthetic datasets

– Scientific datasets

• Conclusion and Future Work

43

Execution Environment

• CPU - Intel 5530 Quad core @ 2.4 GHz with
8MB cache (8 OpenMP threads)

• GPU - NVIDIA C2050 (448 Cores @ 1.15GHz)
with 3GB GDDR5 1.5 GHZ ECC RAM

44

Outline

• Introduction

– Graph

– Graph similarity and graph kernel

– Shortest Path Graph Kernel

• Parallelization on GPU and CPU

– Four GPU implementations

– One OpenMP implementation

• Experiments results

– Synthetic datasets

– Scientific datasets

• Conclusion and Future Work

45

Synthetic Datasets

46

Speedups on Uni-size Sets

47

Speedups on Mixed Sets

48

Outline

• Introduction

– Graph

– Graph similarity and graph kernel

– Shortest Path Graph Kernel

• Parallelization on GPU and CPU

– Four GPU implementations

– One OpenMP implementation

• Experiments results

– Synthetic datasets

– Scientific datasets

• Conclusion and Future Work

49

Scientific Datasets

50

Speedups on Scientific Datasets

51

Outline

• Introduction

– Graph

– Graph similarity and graph kernel

– Shortest Path Graph Kernel

• Parallelization on GPU and CPU

– Four GPU implementations

– One OpenMP implementation

• Experiments results

– Synthetic datasets

– Scientific datasets

• Conclusion and Future Work

52

Conclusion and Future Work

• We present four different GPU parallelizations

• Achieve up to 44x speedup on synthetic
datasets

• Achieve up to 10x speedup on scientific
datasets

• We are going to accelerate other graph
kernels in the future

53

Thanks!

Questions?

54

