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Graph 

• A graph G is a set of vertices V and edges E, 
where E ⊂ V2 

• A graph G may have labels on vertices and/or 
edges 

• The adjacency matrix A of G is defined as 

𝑨𝑖𝑗 =  
1     𝑖𝑓 𝑣𝑖, 𝑣𝑗 ∈ 𝑬
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Graph Similarity 

• How similar are two graphs? 
– For Machine Learning problems like clustering and classification on graphs, graph similarity is crucial. 

• Applications 
– Protein function prediction 

– Drug screening 

– Documents classification (Junk mail?) 

– Image classification 

– Cyber security 

• Challenges 
– Graph isomorphism is NP-complete 

– Graph comparison via isomorphism is prohibitively expensive 
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Graph Kernel 

• To Calculate the similarities between two graphs in polynomial time 

– Random Walk Kernel 
• Compare all walks in two graphs G and G’ 

– Shortest Path Kernel 
• Compare all pairs shortest paths for G and G’ via Floyd-Warshall 

– Subtree Kernel 
• Compare subtree-like patterns in two graphs G and G’ 

– Cyclic Pattern Kernel 
• Compare simple cycles in two graphs G and G’ 

– Graphlet Kernel 
• Count subgraphs of limited size K in G and G’ 
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Shortest-Path Graph Kernel 

• Convert graph to all pair shortest path graph 
– Floyd-Warshall Algorithm 
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Floyd-Warshall 

13 
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Shortest-Path Graph Kernel 

• Apply shortest path kernel 
– 𝐾𝑠𝑝 𝐺, 𝐺′ =   𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′)𝑒′∈𝐸′𝑒∈𝐸  
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– 𝐾𝑛𝑜𝑑𝑒 is a valid kernel function for comparing two vertices 

– 𝐾𝑒𝑑𝑔𝑒 is a valid kernel function for comparing two edges 
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Shortest Path Graph Kernel 

18 

• Lines 4-5 loop through 
all paths in G1 



Shortest Path Graph Kernel 

19 

• Lines 4-5 loop through 
all paths in G1 

• Lines 6-7 loop through 
all paths in G2 



Shortest Path Graph Kernel 

20 

• Lines 4-5 loop through 
all paths in G1 

• Lines 6-7 loop through 
all paths in G2 

• Line 8 calculates 
𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′) 



Shortest Path Graph Kernel 

21 

• Lines 4-5 loop through 
all paths in G1 

• Lines 6-7 loop through 
all paths in G2 

• Line 8 calculates 
𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′) 

• Lines 10-11 calculate 
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′) 



Shortest Path Graph Kernel 

22 

• Lines 4-5 loop through 
all paths in G1 

• Lines 6-7 loop through 
all paths in G2 

• Line 8 calculates 
𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′) 

• Lines 10-11 calculate 
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′) 

• Line 12 calculates 
𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′) 



Outline 

• Introduction 

– Graph 

– Graph similarity and graph kernel 

– Shortest Path Graph Kernel 

• Parallelization on GPU and CPU 

– Four GPU implementations 

– One OpenMP implementation 

• Experiments results 

– Synthetic datasets 

– Scientific datasets 

• Conclusion and Future Work 

 

 

23 



Problem to be solved 

• Given a set of graphs {g1, g2,…,gn } 

• Calculate the kernel matrix Knxn 

• K(i,j) is the similarity between gi and gj 
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GPU Naive1 

• Calculate the whole kernel matrix Knxn in GPU at once 

– One GPU thread calculate one element in kernel 
matrix Knxn 

– # of GPU threads is n2 
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Drawbacks of Naive1 

• May not have enough GPU memory for large data set 

– 3GB global memory on Nvidia Tesla C2050 

• GPU threads may have different workload due to 
different graph sizes 

– Load balancing 

– Branch divergence 

• Works good if all graphs are small and have the same 
size 
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GPU Naive2 

• Calculate similarity between one pair in GPU 
at a time 
– One GPU thread takes one entry in Shortest Path 

Adjacency Matrix of one input graph 

– # of GPU thread equals to the size of Shortest Path 
Adjacency Matrix of one input graph 

– If there is one edge, then loop through all entries in the 
other Shortest Path Adjacency Matrix 
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Drawbacks of Naive2 

• Waste of GPU resources 

– May have idle threads 
because 0 and INF in 
Shortest Path Adjacency 
Matrix 

• Slow Memory access 

– Random, non-coalesced 
memory access pattern 
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Data Transformation 

• Transform Shortest Path Adjacency Matrix to 
three arrays with length equals to number of 
shortest paths 

– SP_W to store the weight of each path 

– SP_S to store the starting node of each path 

– SP_E to store the ending node of each path 
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Advanced GPU Implementation 

• Pre-calculation of Knode using Vertex Kernel 

• Calculate Kwalk uisng Edge Kernel 

• Apply Reduction Kernel to sum the results 
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Advantage and Disadvantage of  Adv. 
Implementation 

• Advantage 

– No branch divergence 

– Coalesced memory access 

• Disadvantage 

– Waste of GPU resource when graphs are small 
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Hybrid Implementation 

• Combine Naive1 and Advanced 

• Sort the input graphs according to their sizes 

• Set a threshold for the graph size 

– For graphs with sizes smaller than threshold, use 
Naive1 

– Otherwise, use Advanced 
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OpenMP Implementation 

• Convert the top triangle of the kernel matrix 
to a 1D array 

• Create as many OpenMP threads as number 
of CPU cores 

• Each OpenMP thread calculates one entry in 
the 1D array in order, goes to next iteration 
until all entries are computed 
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Execution Environment 

• CPU - Intel 5530 Quad core @ 2.4 GHz with 
8MB cache (8 OpenMP threads) 

• GPU - NVIDIA C2050 (448 Cores @ 1.15GHz) 
with 3GB GDDR5 1.5 GHZ ECC RAM 
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Synthetic Datasets 
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Speedups on Uni-size Sets 
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Speedups on Mixed Sets 
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Scientific Datasets 
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Speedups on Scientific Datasets 
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Conclusion and Future Work 

• We present four different GPU parallelizations 

• Achieve up to 44x speedup on synthetic 
datasets 

• Achieve up to 10x speedup on scientific 
datasets 

• We are going to accelerate other graph 
kernels in the future 
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Thanks! 

Questions? 
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