
Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk
are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

1

1

Optimizing OpenCL Applications
on Intel® Xeon Phi™ Coprocessor

IWOCL-2013 Tutorial

 Ayal Zaks, Intel

 Arik Narkis, Intel (presenter)

ayal.zaks@intel.com
arik.narkis@intel.com

mailto:ayal.zaks@intel.com
mailto:Arik.narkis@intel.com

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Introduction

• Why Intel® Xeon Phi™ coprocessor?

• Why OpenCL*?

• What’s the challenge?

• Production level OpenCL* on Intel Xeon Phi
coprocessor has just been released (May 8th, 2013)

• Subsequent releases are expected to improve features-set
and performance

3

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

High Level Outline

Intel® Xeon Phi™ Coprocessor overview

Mapping the OpenCL* constructs to Xeon Phi

Performance tuning and optimizations

Tools and resources

Summary and Q&As

4

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Intel® Xeon Phi™ Coprocessor Overview

Xeon Phi Developer site: http://software.intel.com/mic-developer

5

http://software.intel.com/mic-developer
http://software.intel.com/mic-developer
http://software.intel.com/mic-developer
http://software.intel.com/mic-developer
http://software.intel.com/mic-developer

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Intel® Many Integrated Core (Intel MIC)
Architecture

• Targeted at highly parallel HPC workloads

• Physics, Chemistry, Biology, Financial Services

• General Purpose Programming Environment

• Runs Linux* (full service, open source OS)

• Runs applications written in Fortran, C, C++,
OpenMP, OpenCL* …

• Runs the x86 ISA + new SIMD extension

• Supports X86 coherent memory model, IEEE 754

• x86 collateral (libraries, compilers, Intel® VTune™,
debuggers, etc)

6

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

7

Intel® Xeon Phi™ Coprocessor
Micro Architecture

L1 L1 L1 L1

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

8

Intel® Xeon Phi™ Coprocessor – The Core

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

9

Intel® Xeon Phi™ Coprocessor is an

x86 based, many-core co-processor

With wide SIMD vector instruction

Moving to OpenCL* Mapping

to Xeon Phi . . .

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

The Intel® SDK for OpenCL Applications
Online Resource

intel.com/software/opencl-xe
intel.com/software/opencl

@intelopencl

The SDK section of the Intel® Developers Zone is a one-stop shop for resources,
support and information for OpenCL* developers

 Free Downloads

 Code Samples

 Tech Articles

 Case Studies

 Forums and Support

 Beta Programs

10

http://www.intel.com/software/opencl-xe
http://www.intel.com/software/opencl-xe
http://www.intel.com/software/opencl-xe
http://www.intel.com/software/opencl-xe
http://www.intel.com/software/opencl
http://www.intel.com/software/opencl

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

The NDRange - Example

The NDRange defines a compute task on one of the queues

Global Dimensions: 1024 x 1024 (whole problem space, 1 M work-items)

Local Dimensions: 128 x 128 (work group … executes together, 16 K WIs)

Workgroups space: 8 x 8 (total 64 WGs)

11

1024

1
0
2
4

Synchronization between
work-items possible only
within a workgroup via
local memory / barrier
instruction

Cannot synchronize
outside of a
workgroup

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Xeon Phi

Core N-4

Core N-3

Core N-1

Core N-2

Core 0

The NDRange on Intel® Xeon Phi™
Coprocessor

• The workgroup is the smallest task

• Whole workgroups are parallelized on HW threads

12

Workgroup[0][1]

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

The Work-group

The OpenCL* compiler creates an optimized routine that executes a
WG

__Kernel ABC(…)

for (int i = 0; i < get_local_size(2); i++)

 for (int j = 0; j < get_local_size(1); j++)

 for (int k = 0; k < get_local_size(0); k++)

 Kernel_Body;

Dimension zero of the NDRange is the most inner loop

13

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

The Workgroup (cont.)

We haven’t utilized the HW vector unit yet

__Kernel ABC(…)

For (int i = 0; i < get_local_size(2); i++)

 For (int j = 0; j < get_local_size(1); j++)

 For (int k = 0; k < get_local_size(0); k+= VEC_SIZE)

 Vector_Kernel_Body;

• Implicit vectorization over dimension zero of the
NDRange

• No reason to vectorize manually

14

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

LLVM* Standard
Passes

LLVM* Vectorizer:
Scalarizer
Divergence Analysis
Predicator
Packetizer
bypasses

LLVM* OpenCL Passes:
Barriers
Builtins
Kernel Arguments

LLVM* Standard
Passes

LLVM* IR

LLVM* IR

LLVM* IR

Intel® Xeon Phi™ Coprocessor
OpenCL* Compiler

15

OpenCL* LLVM
Compiler + Optimizer

Clang*

Code
Generator

Xeon Phi
Code

LLVM* IR

OpenCL*

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Vectorization example

16

__kernel void program(float4* pos, int numBodies, float deltaTime)

{

 float myPos = gid;

 float refPos = numBodies + deltaTime;

 float4 r = pos[refPos – myPos];

 float distSqr = r.x * r.x + r.y * r.y + r.z * r.z;

 float invDist = sqrt(distSqr + epsSqr);

 float invDistCube = invDist * invDist * invDist;

 float4 acc = invDistCube * r;

 float4 oldVel = vel[gid];

 float newPos = myPos.w;

}

OpenCL kernel code
Multiple work items

Next: Visualize

Graphic visualization…
Next: Scalarize

Scalarizing code…
Next: Vectorize

Vectorizing code…

Vector instructions

Reduced amount of

invocations

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

17

Parallelize WGs across the HW threads

Vectorize WIs across the SIMD unit

Moving to Optimizations . . .

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Host-device efficiency

The PCIe* is the slowest data channel in the platform

• Transfer reduction

• Implicit transfer elimination

• Overlap compute with transfer

18

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Host-device efficiency
Transfer reduction – the obvious
 • Use the minimal data type needed for the problem

– float/double

– int/long

• Transfer only the data elements needed

– Array of Structures may include unused fields

• Avoid padding:

19

struct{
 double b;
 float a;
 float c;
}abc;

struct{
 float a;
 double b;
 float c;
}abc;

24 Bytes 16 Bytes

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Host-device efficiency
Avoid implicit buffers transfer

• While mapping a buffer, use the flags wisely:

– map: CL_MAP_WRITE_INVALIDATE_REGION

– The runtime may not need to copy the buffer over the PCIe to
the host

– map: CL_MAP_READ

– The matching unmap is a NOOP

20

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Host-device efficiency
Overlap Compute and Transfer

• A, B, C are buffers

• Parallel compute and transfer through 2 in-order queues

21

Write input1

Compute1

Read Results1

Write input2

Compute3

Read Results2

in-order queue

In-order queue1

Compute2

Compute4

Write input1

Read Results1

Write input2

Read Results2

Compute1

Compute3

Compute2

Compute4

In-order queue2

A

AB

BC

C

A

AB

BC

C

Optimized

A

A

C

C

AB

BC

AB

BC

Naïve

Write input3 A

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Multi-threading in many core
environment

• Core/threads utilization

• The NDRange tail effect (load balancing)

• Task scheduling overhead

22

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

The NDRange Tail Effect
In-order queue, 260 WGs, 10 repeats

23

240-

20-

VTune

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Feed the Beast

The key:

• The application needs to feed 240 threads for full
utilization

• Dependent NDRanges don’t overlap

• Each NDRange should include enough WGs

– >1000 WGs should allow dynamic load balancing

– 240 is the bare minimum

– 241 would take twice as long – NDRange tail effect

24

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

The NDRange Tail Effect
Out-of-order queue, 260 WGs, 10 repeats

25

240-

VTune

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Hiding the NDRange Tail Effect

• When NDRanges are independent

• When tail is significant

• Overlap the tail with the next NDRange

• Use OOO queue

26

VTune

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Performance vs WG Count

• Internal workload example

• Fixed WG size

• Total problem size increases  WG count increases

27 Measured on pre-production Xeon Phi part

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

 16 64 256

WGs

Elements Per second (higher is better)

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Under-Utilization Example:
SG++, Sparse Grid classification benchmark
Alex Heinecke, Technical University of Munich

Iterative algorithm

28

Time

Core
Utilization

• The input size grows with iterations

• With WG size of 64, there are not enough WGs in the first
iterations

• We reduced the WG size to 16  WG count increased

• Improved the first iterations utilization

• The kernels include an explicit huge loop

Optimized

VTune

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Task Scheduling Overhead

• Xeon Phi relies on SW to schedule threads and tasks

• Overhead scheduling 240 threads

• Noticeable mainly in light-weight WGs

• We are working to reduce this overhead (not eliminate)

• What is a light-weight WG?

• Only few computations per work-item

• Small local_size

29

__kernel

void array_mul(

 __global const float *a,

 __global const float *b,

 __global float *c)

{

 int i = get_global_id(0);

 c[i] = a[i] * b[i];

}

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Detecting Scheduling Overhead

30

• The kernels are associated with the “Dynamic Code “ module
• Anything else is “overhead”
• 652 sec in kernels
• 524 sec in “overhead”
• if (“overhead” > kernels_time/5)

• Investigate the overhead

Vtune
view

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Scalability Graph - Hydro miniapp
Guillaume Colin de Verdière, CEA, France

31

1

2

4

8

16

32

2 4 8 16 32 60

Loop2KcuMakeBoundary

Loop1KcuMakeBoundary

LoopKcourant

LoopEOS

Loop1KcuGather

Loop2KcuGather

Loop1KcuQleftright

1

2

4

8

16

32

64

2 4 8 16 32 60

KernelMemset

LoopKQEforRow

Loop1KcuUpdate

Loop1KcuCmpflx

LoopKcuSlope

Loop1KcuConstoprim

Loop3KcuUpdate

Loop1KcuTrace

Loop1KcuRiemann

cores # cores

Lightest weight

Kernels

https://github.com/HydroBench/Hydro

Low core scalability

High core scalability

Measured on pre-production Xeon Phi part

64

https://github.com/HydroBench/Hydro
https://github.com/HydroBench/Hydro

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Performance Example –BUDE
Simon McIntosh-Smith, University of Bristol

James Price, University of Bristol

• 300K WI, heavy-weight kernel, diverged branches

• No vectorization with WG size lower than 16

• Load-balancing and NDRange tail impact
32

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000

P
e
r
fo

r
m

a
n

c
e
,

h
ig

h
e
r
 i

s
 b

e
tt

e
r

WG Size [1D]

293 WGs

187 idle threads
at the 2nd round

Measured on pre-production Xeon Phi part

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Workgroup Size Summary

• NDRange with local_size NULL works well in most cases

• Minimum LOCAL_SIZE 16 at dimension zero

• LOCAL_SIZE at dimension zero a multiply of 16

• Total WG_COUNT higher than 1000

33

LOCAL_SIZE
(Dimension zero)

Vector Lane
Utilization

8 6%

15 6%

16 100%

17 53%

32 100%

1000 89%

1024 100%

WG_COUNT Upper
bound
HW thread
Utilization

16 7%

100 42%

Full (240) 100%

240+1 ~50%

1,000 ~100%

12,000 100%

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Local memory and barriers avoidance

• Intel® Xeon Phi™ Coprocessor doesn’t distinguish
between local and global memory

• It includes coherent x86-like caching system

• “local memory” is allocated in regular memory

• Using local memory just adds another memory copy and
work-item synchronization (barriers)

• Xeon Phi includes no HW support for Barriers

• Barriers are emulated by SW

• Recommendation: Avoid using local memory and
barriers

• Doing so would also simplify the code

34

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Extracted Example from SG++
Local memory and barriers removal
Alex Heinecke, Technical University of Munich

35

int GIdx = get_global_id(0);
int LIdx = get_local_id(0);
__local double locData[64];
__local double locSource[64];

for(int i = 0; i < sourceSize; i+= 64)
{
 locData[LIdx] = ptrData[i+LIdx];
 locSource[LIdx] = ptrSource[i+LIdx];
 barrier(CLK_LOCAL_MEM_FENCE);
 for(int k = 0; k < 64 ; k++)
 {
 myResult += DoWork(

 locSource[k],
 locData[k],
 ptrLevel[GIdx]
);

 }
 barrier(CLK_LOCAL_MEM_FENCE);
}
ptrResult[globalIdx] = myResult;

int GIdx = get_global_id(0);
int LIdx = get_local_id(0);

for(int i = 0; i < sourceSize; i++)
{

 myResult += DoWork(

 ptrSource[i],
 ptrData[i],
 ptrLevel[GIdx]
);

}
ptrResult[globalIdx] = myResult;

Faster on Xeon Phi

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Implicit vectorization

• Recap: Implicit vectorization

• Diverged control-flow

• Gather/scatter

• Bounds check (early exit)

• Implicit WI Loop Tail

36

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Implicit vectorization
Recap

__Kernel ABC(…)

For (int i = 0; i < get_local_size(2); i++)

 For (int j = 0; j < get_local_size(1); j++)

 For (int k = 0; k < get_local_size(0); k+= VEC_SIZE)

 Vector_Kernel_Body;

• Implicit vectorization over dimension zero of the NDRange

• Don’t vectorize manually!

37

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Workgroup Vectorization:
Diverged Branches
Uniform Branch Diverged Branch

The compiler can prove that all the
WIs within the vector take the
same branch

The compiler cannot prove that the
branch is uniform

//isSimple is a kernel argument
int GID = get_global_id(0);
if (isSimple == 0)
 res = buff[GID];

int GID = get_global_id(0);
if (GID == 0)
 res = -1;

38

• Branches dependent on WI_ID[0] are diverged
between work-items

• Simple solution: Don’t vectorize

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Predicating (flattening) Diverged
Branches

39

• Predication flattens the control-flow and
executes both the „then‟ and „else‟.

• Diverging CF reduces the utilization of
vector instructions.

• Predication adds masking-overhead.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Workgroup Vectorization:
Diverged Branch Predication (if-conversion)

40

Original
Diverged Branch

Automatic Predication (pseudo code)

int GID = get_global_id(0);
if (GID == 0)
 res = -1;
else{
 res = sqrt(buff[GID]);
 res += arg1;
}

int GID = get_global_id(0);
mask = (GID == 0);
res_then = -1;
res_else = sqrt(buff[GID]);
res_else += arg1;
res = Select(res_then, res_else, mask);

http://llvm.org/devmtg/2011-11/Rotem_IntelOpenCLSDKVectorizer.pdf
Ralf Karrenberg & Sebastian Hack - Saarland University:

http://www.cdl.uni-saarland.de/papers/karrenberg_wfv.pdf
http://www.cdl.uni-saarland.de/papers/karrenberg_opencl.pdf

http://llvm.org/devmtg/2011-11/Rotem_IntelOpenCLSDKVectorizer.pdf
http://llvm.org/devmtg/2011-11/Rotem_IntelOpenCLSDKVectorizer.pdf
http://llvm.org/devmtg/2011-11/Rotem_IntelOpenCLSDKVectorizer.pdf
http://llvm.org/devmtg/2011-11/Rotem_IntelOpenCLSDKVectorizer.pdf
http://llvm.org/devmtg/2011-11/Rotem_IntelOpenCLSDKVectorizer.pdf
http://llvm.org/devmtg/2011-11/Rotem_IntelOpenCLSDKVectorizer.pdf
http://www.cdl.uni-saarland.de/papers/karrenberg_wfv.pdf
http://www.cdl.uni-saarland.de/papers/karrenberg_wfv.pdf
http://www.cdl.uni-saarland.de/papers/karrenberg_wfv.pdf
http://www.cdl.uni-saarland.de/papers/karrenberg_wfv.pdf
http://www.cdl.uni-saarland.de/papers/karrenberg_opencl.pdf
http://www.cdl.uni-saarland.de/papers/karrenberg_opencl.pdf
http://www.cdl.uni-saarland.de/papers/karrenberg_opencl.pdf
http://www.cdl.uni-saarland.de/papers/karrenberg_opencl.pdf

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Workgroup Vectorization:
Predication + bypass

41

Original
Diverged Branch

Automatic Predication (pseudo code)
+ bypass

int GID = get_global_id(0);
if (GID == 0)
 res = -1;
else{
 res = sqrt(buff[GID]);
 res += arg1;
}

int GID = get_global_id(0);
mask = (GID == 0);
res_then = -1;
if(mask != 0)
 res_else = sqrt(buff[GID]);
 res_else += arg1;
endif
res = Select(mask, res_then, res_else);

• Tradeoff between the cost of the branch and the saving
• Included in the current release
• Will be improved in the next release

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Implicit vectorization
Diverged branches

• Diverged branches add performance penalty

• Masks management

• Low lane utilization

• Expensive memory accesses

• Avoid branches

• Algorithmic changes

• Use uniform iteration space

• Kernel specialization

42

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Implicit Vectorization Example
Use uniform iteration space to avoid branches

43

int Gidx = get_global_id(0);
float sum;

if (Gidx % 2 == 0)
{
 sum = inp[Gidx]+inp[Gidx+1];
 out[Gidx/2] = sum;
}

*Local size is even number

#define INPUT_SIZE…
#define OUTPUT_SIZE (INPUT_SIZE/2)
float inp[INPUT_SIZE];
float out[OUTPUT_SIZE];

global_size[0] = INPUT_SIZE;

int Gidx = get_global_id(0);
float sum;

sum = inp[2*Gidx]+inp[2*Gidx+1];

 out[Gidx] = sum;

#define INPUT_SIZE…
#define OUTPUT_SIZE (INPUT_SIZE/2)
float inp[INPUT_SIZE];
float out[OUTPUT_SIZE];

global_size[0] = INPUT_SIZE/2;

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Implicit Vectorization Example
Construct the NDRange space to avoid branches on ID0

44

int Gid0 = get_global_id(0);
int Gid1 = get_global_id(1);

float res;

if (!isError(buff1[Gid0]))
{
 res= Compute(
 buff1[Gid0],
 buff2[Gid1]
)
}

global_size[] = {K, L};
local_size[] = {M, N};

int Gid0 = get_global_id(0);
int Gid1 = get_global_id(1);

float res;

if (!isError(buff1[Gid1]))
{
 sum = Compute(
 buff1[Gid1],
 buff2[Gid0]
)
}

//switch the implicit loops
global_size[] = {L, K};
local_size[] = {N, M};

//Diverged //Uniform

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Implicit Vectorization
Diverged branch – Dynamic uniformity matters

45

if (buff[id0] > 0)
{
 // compute positive number
}
else{
 // compute negative number
}

Consider an unavoidable diverged branch

Both then and else include bypass

Few input scenarios:

• buff[] is entirely positive

• Randomly spread values

• Sorted smallest to largest

• Each chunk of 1024 elements is sorted

• Dynamic uniformity improves vector lane utilization

• In some cases, (partial) sorting can be beneficial

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Gather and Scatter Operations

• The compiler generates scatter/gather on non-
consecutive memory accesses

• Gather and Scatter instructions use int32 indices

• get_global_id() is the source of indices

• Guess what?

• size_t get_global_id (uint dimindx)

• size_t is unsigned int64 on Xeon Phi

• The compiler needs to safely cast uint64 to int32

• Or give-up using gather or scatter

46

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Helping the Compiler generate
Gather and Scatter Operations

• Cast IDs to signed int

• Avoid pointers manipulations

• myBuff = buff + arg;

• Use array notations

• Buffer[id]

• Indirect memory access is hard to track

• Buffer[A[id]]

47

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Bounds Check:
Early-Exit and Late-Start Optimization

48

__kernel
void abc(…)
{
 size_t id = get_global_id(0);

 if(id > LAST_ID)
 return;

 // Rest of kernel
}

void abc(…)
{
 for (int k = sgid; k <= lgid; k+= VEC_SIZE)
 {
 if(id > LAST_ID)
 return;

 // Rest of vectorized and MASKED kernel
 }
}

Original kernel Pseudo naïve generated code

//Diverged

void abc(…)
{
 for (int k = sgid; k <= MIN(lgid, LAST_ID); k+= VEC_SIZE)
 {

 // Rest of vectorized kernel (NON-MASKED)
 }
}

Pseudo optimized generated code

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Early-Exit and Late-Start Optimization
What’s the problem?

• What’s the semantics of this kernel?

• Which work-items should reach beyond
the “return”?

• 0 <= ID <= LAST_ID

• What about ID==0x800000002?

• The IF condition doesn’t define suffix

49

__kernel
void abc(…)
{
 int id = get_global_id(0);

 if(id > LAST_ID)
 return;

 // Rest of kernel
}

Original kernel

Recommendations:
• Use ID bounds check only when required
• Keep the ID bounds check size_t

__kernel
void abc(…)
{
 size_t id = get_global_id(0);

 if(id > LAST_ID)
 return;

 int_id = (int)id;
 // Rest of kernel
}

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Implicit WI Loop Tail

• The tail is executed in scalar loop

• WG of size 2*VEC_SIZE executes faster than 2*VEC_SIZE-1

• It’s harder with “barriers”

• Kernels with barriers execute vectorized only if WG size is divisible by
VEC_SIZE

• Recommendation: favor local_size[0] divisible by VEC_SIZE

50

void myKernel(…)
{
 int k;
 for (int k = 0; k < get_local_size(0); k+= VEC_SIZE)
 Vector_Kernel_Body;
 k -= VEC_SIZE;
 for (; k < get_local_size(0); k++)
 Scalar_Kernel_Body;
}

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Cache optimizations

• The memory subsystem is often the bottleneck

• In-order execution implies greater sensitivity to
memory latencies

• Generic guidelines valid to Intel® Xeon Phi™
coprocessor too:

• Reduce data size

• Improve temporal and spatial locality

• Apply tiling/blocking techniques to allow data re-use from
caches

51

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Blocking Example

52

for (i1 = 0; i1 < N; i1 ++){
 for (i2=0; i2 < N; i2++) {
 OUT[i1] += compute(data[i1], data[i2]);
 }
}

for (i2 = 0; i2 < N; i2 += BLOCK_SIZE) {
 for (i1=0; i1 < N; i1 ++) {
 for (i22=0; i22 < BLOCK_SIZE; i22 ++) {
 OUT[i1] += compute(data[i1], data[i2 + i22]);
 }
 }
}

Blocking reduces GDDR traffic significantly for a class of algorithms

How large should BLOCK_SIZE be?
The largest such that four blocks stay in the L2 cache
 See our OpenCL GEMM sample

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Data layout and memory access pattern

• Data access pattern impacts the performance greatly

• Consecutive access is usually the fastest

• AOS/SOA tradeoffs

53

2:50

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Consecutive Access Within the WG
Row/Column major

54

__kernel
void myKernel(…)
{
 int k = get_global_id(0);
 int i = get_global_id(1);

 A[i * ROW_ZISE + k] += B[k * ROW_ZISE + i];
}

Strided access Consecutive access

void myKernel(…)
{
 int I, k;
 for (int i = 0; i < get_local_size(1); i++)
 for (int k = 0; k < get_local_size(0); k+= VEC_SIZE)
 {
 A[i * ROW_ZISE + k]16 += B[k * ROW_ZISE + i]gather_16;
 }
}

Real kernel

Pseudo generated code

Recommendation: Prefer row major consecutive memory access

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Consecutive Access Within the WG
1D strided access

55

__kernel
void myKernel(…)
{
 int k = get_global_id(0);

 A[k] += B[5 * k];
}

Strided access Consecutive access

void myKernel(…)
{
 int k;
 for (int k = 0; k < get_local_size(0); k+= VEC_SIZE)
 {
 A[k]16 += B[5 * k]gather_16;
 }
}

Real kernel

Pseudo generated code

Recommendation: Prefer consecutive access along dimension zero

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

SoA vs AoS Data Layouts

56

SOA:

double POSITION_X[SIZE_OF_BUFFER];
double POSITION_Y[SIZE_OF_BUFFER];
double POSITION_Z[SIZE_OF_BUFFER];

AOS:

typedef struct{
 double X;
 double Y;
 double Z;
}POS;
POS POSITION[SIZE_OF_BUFFER];

SOA:
• Consecutive access translates to

plain vector load/store
• May access to many pages

simultaneously

AOS:
• Consecutive access translates to

strided gather/scatter
• Minimal simultaneous pages

access

• SOA usually faster for consecutive access pattern

• AOS usually faster for random sparse access pattern

• Random access translates to random gather for both

• In random access, spatial locality much better with AOS

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Data Prefetching –
Intel® Xeon Phi™ Coprocessor HW

57

• Data prefetching is critical

• L1 Data Cache – 32K per core

• L2 Data/Instruction cache – 512K per core

• HW Data prefetching to L2 cache

• SW Prefetching
– Instructions(*) for prefetching to the L1D and L2 caches

– One cache line prefetch or gather prefetch

– Prefetch in exclusive mode or not

• Prefetch instruction won’t cause a page-fault!

Processor events for measuring prefetch effectiveness

* http://software.intel.com/sites/default/files/forum/278102/327364001en.pdf

3:00

http://software.intel.com/sites/default/files/forum/278102/327364001en.pdf
http://software.intel.com/sites/default/files/forum/278102/327364001en.pdf
http://software.intel.com/sites/default/files/forum/278102/327364001en.pdf
http://software.intel.com/sites/default/files/forum/278102/327364001en.pdf
http://software.intel.com/sites/default/files/forum/278102/327364001en.pdf
http://software.intel.com/sites/default/files/forum/278102/327364001en.pdf

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

SW Prefetching

Auto-prefetching

• Identify strided memory access within a loop

• Estimate loop iteration duration

• Don’t overload HW resources

• Insert prefetches to bring data on time to L2 and L1 caches

• Support vectorized code including gather/scatter operations

Manual Prefetching

• When future iteration accesses are not predictable

• For non strided access

• For scalar code

• Accesses that progress in an outer loop

• Whenever auto-prefetching didn’t happen

58

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

How Can I help Prefetching?

• Prefer consecutive memory accesses along the inner most

loop (implicit dimension zero or explicit kernel inner loop)

• Avoid pointer manipulations

• Process the data directly at the global buffers

• Use the “prefetch” built-in for your key kernel inputs and

outputs

• Important especially when the access pattern is not regular

• Better batch few prefetch instructions together

• As a start – add “prefetches” for the current iteration

59

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Controlling Auto-Prefetching
Intel® Xeon Phi™ Specific

New clBuildProgram switch: -auto-prefetch-level=[0-3]

• 0: Disable SW auto-prefetching

• 1: Limited SW auto-prefetching (linear address only)

• 2: Safe SW auto-prefetching: 1 + masked memory access
<default>

• 3: Advance SW auto-prefetching: 2 + scatter/gather

• Controls per kernel compilation

• When Vtune hot-spot on scatter/gather instructions

• Try using auto-prefetch level 3

• When Vtune hot-spot on prefetch instructions

• Try using auto-prefetch level 1

• If these don’t help, then add prefetch instructions
manually based on Vtune’s top memory accesses

60

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Black & Scholes

Multi Xeon-Phi Devices

• Multi Xeon-Phi has just been introduced

• Optimized for shared-context

• Multi-applications
• Each on a separate Xeon Phi

• Cluster with OpenCL

• Nothing specific to OpenCL

61 Measured on pre-production Xeon Phi part

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

62

Moving to Tools . . .

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Kernel Builder

63

OpenCL* Kernels Design and Optimization Tool

Easy development of OpenCL* Kernels for all Intel devices

 Dynamic performance analysis & design tool with

Offline Compilation support

 Assign variables to the kernel and test its

correctness

 Analyze kernel performance based on:

 group sizes

 Optimization build switches

 device used

 Supports MIC, CPU and GPU

 Available on Windows and Linux

http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools

http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools
http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Analyze OpenCL* Applications with Intel® VTune™
Amplifier XE

64

Universal Profiling Tool

 Easy, low-overhead Hotspots analysis

 Focused analysis: u-arch, parallelism, memory

 Interactive source/assembly

 Filter, group and sort your data

 Smooth Visual Studio* integration

 Windows, Linux. Java, .NET, OpenCL*, ...

Special OpenCL* support

 Understand how your kernel performs and why

 Optimize according to guidelines available with the

Performance Optimization Guide

http://software.intel.com/en-us/intel-vtune-amplifier-xe

http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Intel® VTune™ Amplifier XE Process/Module view

65

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Intel® VTune™ Amplifier XE Top-Down View
(from all modules)

66

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Recommendations Summary

• Provide enough WGs to allow high core utilization

• Avoid light-weight kernels

• Avoid branches, especially diverging branches

• Use OOO queues

• Parallel compute and transfer

• More load-balancing

• Linear access is the fastest

• Use simple addressing []

• Prefer row major consecutive access

• Add the “prefetch” built-in when auto-prefetch is not enough

67

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Credits
Intel:

 Anat Shemer

 Mikhail Letavin

 Adir Deri

 Evgeny Fiksman

 Mohammed Agabaria

SG++: Alex Heinecke, Technical University of Munich

Hydro: Guillaume Colin de Verdière, CEA, France

BUDE: Simon McIntosh-Smith, University of Bristol

 James Price, University of Bristol

Maxim Shevtsov

Dmitry Budnikov

Yariv Aridor

Ohad Shacham

Uri Levy

68

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Resources

69

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Resources

70

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Resources

71

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Thank You! Questions?

72

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk
are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

73

73

