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Introduction 

• Why Intel® Xeon Phi™ coprocessor? 

• Why OpenCL*? 

• What’s the challenge? 

 

• Production level OpenCL* on Intel Xeon Phi 
coprocessor has just been released (May 8th, 2013) 

• Subsequent releases are expected to improve features-set 
and performance 
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High Level Outline 

Intel® Xeon Phi™ Coprocessor overview 

Mapping the OpenCL* constructs to Xeon Phi 

Performance tuning and optimizations 

Tools and resources 

Summary and Q&As 

4 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners.  

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos 

Intel® Xeon Phi™ Coprocessor Overview 

Xeon Phi Developer site: http://software.intel.com/mic-developer 
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Intel® Many Integrated Core (Intel MIC) 
Architecture 

• Targeted at highly parallel HPC workloads 

• Physics, Chemistry, Biology, Financial Services 

• General Purpose Programming Environment 

• Runs Linux* (full service, open source OS) 

• Runs applications written in Fortran, C, C++, 
OpenMP, OpenCL* … 

• Runs the x86 ISA + new SIMD extension 

• Supports X86 coherent memory model, IEEE 754 

• x86 collateral (libraries, compilers, Intel® VTune™, 
debuggers, etc) 
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Intel® Xeon Phi™ Coprocessor  
Micro Architecture 

L1 L1 L1 L1 
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Intel® Xeon Phi™ Coprocessor – The Core 
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Intel® Xeon Phi™ Coprocessor is an  

x86 based, many-core co-processor 

With wide SIMD vector instruction 

Moving to OpenCL* Mapping  

to Xeon Phi . . . 
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The Intel® SDK for OpenCL Applications 
Online Resource  

intel.com/software/opencl-xe 
intel.com/software/opencl 

@intelopencl 
 

The SDK section of the Intel® Developers Zone is a one-stop shop for resources, 
support and information for OpenCL* developers 

 Free Downloads 

 Code Samples 

 Tech Articles 

 Case Studies 

 Forums and Support 

 Beta Programs 
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The NDRange - Example 

The NDRange defines a compute task on one of the queues  

Global Dimensions: 1024 x 1024  (whole problem space, 1 M work-items) 

Local Dimensions:   128 x 128       (work group … executes together, 16 K WIs)  

Workgroups space: 8 x 8            (total 64 WGs) 
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1024 

1
0
2
4
 

Synchronization between 
work-items possible only 
within a workgroup via 
local memory / barrier 
instruction 

Cannot synchronize 
outside of a 
workgroup 
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Xeon Phi 

Core N-4 

Core N-3 

Core N-1 

Core N-2 

Core 0 

The NDRange on Intel® Xeon Phi™ 
Coprocessor 

• The workgroup is the smallest task 

• Whole workgroups are parallelized on HW threads 
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Workgroup[0][1] 
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The Work-group 

The OpenCL* compiler creates an optimized routine that executes a 
WG 

 

__Kernel ABC(…) 

for (int i = 0; i < get_local_size(2); i++) 

    for (int j = 0; j < get_local_size(1); j++) 

        for (int k = 0; k < get_local_size(0); k++) 

 Kernel_Body; 

Dimension zero of the NDRange is the most inner loop 
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The Workgroup (cont.) 

We haven’t utilized the HW vector unit yet 

 

__Kernel ABC(…) 

For (int i = 0; i < get_local_size(2); i++) 

     For (int j = 0; j < get_local_size(1); j++) 

 For (int k = 0; k < get_local_size(0); k+= VEC_SIZE) 

  Vector_Kernel_Body; 

 

• Implicit vectorization over dimension zero of the 
NDRange 

• No reason to vectorize manually 
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LLVM* Standard 
Passes 

LLVM* Vectorizer: 
Scalarizer 
Divergence Analysis 
Predicator 
Packetizer 
bypasses 

LLVM* OpenCL Passes: 
Barriers 
Builtins 
Kernel Arguments 

LLVM* Standard 
Passes 

LLVM* IR 

LLVM* IR 

LLVM* IR 

Intel® Xeon Phi™ Coprocessor 
OpenCL* Compiler 
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OpenCL* LLVM 
Compiler + Optimizer 

Clang* 

Code 
Generator 

Xeon Phi 
Code 

LLVM* IR 

OpenCL* 
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Vectorization example 
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__kernel void program(float4* pos, int numBodies, float deltaTime) 

{ 

    float myPos = gid; 

    float refPos = numBodies + deltaTime; 

    float4 r = pos[refPos – myPos]; 

    float distSqr = r.x * r.x  +  r.y * r.y  +  r.z * r.z; 

    float invDist = sqrt(distSqr + epsSqr); 

    float invDistCube = invDist * invDist * invDist; 

    float4 acc = invDistCube * r; 

    float4 oldVel = vel[gid]; 

    float newPos = myPos.w; 

} 

OpenCL kernel code 
Multiple work items 

Next: Visualize 

Graphic visualization… 
Next: Scalarize 

Scalarizing code… 
Next: Vectorize 

Vectorizing code… 

Vector instructions 

Reduced amount of  

invocations 
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17 

Parallelize WGs across the HW threads 

Vectorize WIs across the SIMD unit  

Moving to Optimizations . . . 
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Host-device efficiency  

The PCIe* is the slowest data channel in the platform 

• Transfer reduction 

• Implicit transfer elimination 

• Overlap compute with transfer 

18 
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Host-device efficiency  
Transfer reduction – the obvious 
 • Use the minimal data type needed for the problem 

– float/double 

– int/long 

• Transfer only the data elements needed 

– Array of Structures may include unused fields 

• Avoid padding: 
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struct{ 
       double b; 
       float a; 
       float c; 
}abc; 

struct{ 
        float a; 
       double b; 
       float c; 
}abc; 

24 Bytes 16 Bytes 
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Host-device efficiency  
Avoid implicit buffers transfer 

• While mapping a buffer, use the flags wisely: 

– map: CL_MAP_WRITE_INVALIDATE_REGION 

– The runtime may not need to copy the buffer over the PCIe  to 
the host 

– map: CL_MAP_READ 

– The matching unmap is a NOOP 
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Host-device efficiency  
Overlap Compute and Transfer 

• A, B, C are buffers 

• Parallel compute and transfer through 2 in-order queues 

21 

Write input1 

Compute1 

Read Results1 

Write input2 

Compute3 

Read Results2 

in-order queue 

In-order queue1 

Compute2 

Compute4 

Write input1 

Read Results1 

Write input2 

Read Results2 

Compute1 

Compute3 

Compute2 

Compute4 

In-order queue2 

A 

AB 

BC 

C 

A 

AB 

BC 

C 

Optimized 

A 

A 

C 

C 

AB 

BC 

AB 

BC 

Naïve  

Write input3 A 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners.  

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos 

Multi-threading in many core 
environment 

• Core/threads utilization 

• The NDRange tail effect (load balancing) 

• Task scheduling overhead 

22 
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The NDRange Tail Effect 
In-order queue, 260 WGs, 10 repeats 

23 

240- 

20- 

VTune 
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Feed the Beast 

The key: 

• The application needs to feed 240 threads for full 
utilization 

• Dependent NDRanges don’t overlap 

• Each NDRange should include enough WGs 

– >1000 WGs should allow dynamic load balancing 

– 240 is the bare minimum 

– 241 would take twice as long – NDRange tail effect 
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The NDRange Tail Effect 
Out-of-order queue, 260 WGs, 10 repeats 
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240- 

VTune 
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Hiding the NDRange Tail Effect 

• When NDRanges are independent 

• When tail is significant 

• Overlap the tail with the next NDRange 

• Use OOO queue 

26 
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Performance vs WG Count 

• Internal workload example 

• Fixed WG size 

• Total problem size increases  WG count increases 

 

 

27 Measured on pre-production Xeon Phi part 
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Under-Utilization Example:  
SG++, Sparse Grid classification benchmark  
Alex Heinecke, Technical University of Munich 

Iterative algorithm 
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Time 

Core 
Utilization 

• The input size grows with iterations 

• With WG size of 64, there are not enough WGs in the first 
iterations 

• We reduced the WG size to 16  WG count increased 

• Improved the first iterations utilization 

• The kernels include an explicit huge loop 

Optimized 

VTune 
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Task Scheduling Overhead 

• Xeon Phi relies on SW to schedule threads and tasks 

• Overhead scheduling 240 threads 

• Noticeable mainly in light-weight WGs 

• We are working to reduce this overhead (not eliminate) 

• What is a light-weight WG? 

• Only few computations per work-item 

• Small local_size 
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__kernel 

void array_mul( 

  __global const float *a,  

  __global const float *b,  

  __global float       *c) 

{ 

 

  int i = get_global_id(0); 

  c[i] = a[i] * b[i];  

} 
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Detecting Scheduling Overhead 

30 

• The kernels are associated with the “Dynamic Code “ module 
• Anything else is “overhead” 
• 652 sec in kernels 
• 524 sec in “overhead” 
• if (“overhead” > kernels_time/5) 

• Investigate the overhead 

Vtune 
view 
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Scalability Graph - Hydro miniapp 
Guillaume Colin de Verdière, CEA, France 
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https://github.com/HydroBench/Hydro 

Low core scalability 

High core scalability 

Measured on pre-production Xeon Phi part 
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Performance Example –BUDE 
Simon McIntosh-Smith, University of Bristol 

James Price, University of Bristol 

 

 

• 300K WI, heavy-weight kernel, diverged branches 

• No vectorization with WG size lower than 16 

• Load-balancing and NDRange tail impact 
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Workgroup Size Summary 

• NDRange with local_size NULL works well in most cases 

• Minimum LOCAL_SIZE 16 at dimension zero 

• LOCAL_SIZE at dimension zero a multiply of 16 

• Total WG_COUNT higher than 1000 

33 

LOCAL_SIZE  
(Dimension zero) 

Vector Lane 
Utilization 

8 6% 

15 6% 

16 100% 

17 53% 

32 100% 

1000 89% 

1024 100% 

WG_COUNT Upper 
bound  
HW thread 
Utilization 

16 7% 

100 42% 

Full (240) 100% 

240+1 ~50% 

1,000 ~100% 

12,000 100% 
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Local memory and barriers avoidance 

• Intel® Xeon Phi™ Coprocessor doesn’t distinguish 
between local and global memory 

• It includes coherent x86-like caching system 

• “local memory” is allocated in regular memory 

• Using local memory just adds another memory copy and 
work-item synchronization (barriers) 

• Xeon Phi includes no HW support for Barriers 

• Barriers are emulated by SW 

• Recommendation: Avoid using local memory and 
barriers 

• Doing so would also simplify the code 

34 
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Extracted Example from SG++ 
Local memory and barriers removal 
Alex Heinecke, Technical University of Munich 
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int GIdx = get_global_id(0); 
int LIdx = get_local_id(0); 
__local double locData[64]; 
__local double locSource[64 ]; 
 
for(int i = 0; i < sourceSize; i+= 64 ) 
{ 
    locData[LIdx] = ptrData[i+LIdx]; 
    locSource[LIdx] = ptrSource[i+LIdx]; 
    barrier(CLK_LOCAL_MEM_FENCE); 
    for(int k = 0; k < 64 ; k++) 
    { 
         myResult += DoWork( 

                   locSource[k],  
                   locData[k], 
                   ptrLevel[GIdx] 
                   ); 

    } 
    barrier(CLK_LOCAL_MEM_FENCE); 
} 
ptrResult[globalIdx] = myResult; 

int GIdx = get_global_id(0); 
int LIdx = get_local_id(0); 
 
 
 
for(int i = 0; i < sourceSize; i++) 
{ 
 
 
 
 
 
     myResult += DoWork( 

               ptrSource[i],  
               ptrData[i], 
               ptrLevel[GIdx] 
               ); 

 
 
} 
ptrResult[globalIdx] = myResult; 

Faster on Xeon Phi 
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Implicit vectorization 

• Recap: Implicit vectorization  

• Diverged control-flow 

• Gather/scatter 

• Bounds check (early exit) 

• Implicit WI Loop Tail 
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Implicit vectorization 
Recap  

__Kernel ABC(…) 

For (int i = 0; i < get_local_size(2); i++) 

    For (int j = 0; j < get_local_size(1); j++) 

        For (int k = 0; k < get_local_size(0); k+= VEC_SIZE) 

            Vector_Kernel_Body; 

 

 

• Implicit vectorization over dimension zero of the NDRange 

• Don’t vectorize manually! 

 

37 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners.  

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos 

Workgroup Vectorization: 
Diverged Branches 
Uniform Branch Diverged Branch 

The compiler can prove that all the 
WIs within the vector take the 
same branch 

The compiler cannot prove that the 
branch is uniform 

//isSimple is a kernel argument 
int GID = get_global_id(0); 
if (isSimple == 0) 
 res = buff[GID]; 
 

int GID = get_global_id(0); 
if (GID == 0) 
 res = -1; 
 

38 

• Branches dependent on WI_ID[0] are diverged 
between work-items 

• Simple solution: Don’t vectorize 
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Predicating (flattening) Diverged 
Branches 

39 

• Predication flattens the control-flow and 
executes both the „then‟ and „else‟.  

• Diverging CF reduces the utilization of 
vector instructions.  

• Predication adds masking-overhead.  
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Workgroup Vectorization: 
Diverged Branch Predication (if-conversion) 

40 

Original  
Diverged Branch 

Automatic Predication (pseudo code) 

int GID = get_global_id(0); 
if (GID == 0) 
    res = -1; 
else{ 
    res = sqrt(buff[GID]); 
    res += arg1; 
} 
 
 

int GID = get_global_id(0); 
mask = (GID == 0); 
res_then = -1; 
res_else = sqrt(buff[GID]); 
res_else += arg1; 
res = Select(res_then, res_else, mask); 

http://llvm.org/devmtg/2011-11/Rotem_IntelOpenCLSDKVectorizer.pdf 
Ralf Karrenberg & Sebastian Hack - Saarland University: 

http://www.cdl.uni-saarland.de/papers/karrenberg_wfv.pdf 
http://www.cdl.uni-saarland.de/papers/karrenberg_opencl.pdf 

http://llvm.org/devmtg/2011-11/Rotem_IntelOpenCLSDKVectorizer.pdf
http://llvm.org/devmtg/2011-11/Rotem_IntelOpenCLSDKVectorizer.pdf
http://llvm.org/devmtg/2011-11/Rotem_IntelOpenCLSDKVectorizer.pdf
http://llvm.org/devmtg/2011-11/Rotem_IntelOpenCLSDKVectorizer.pdf
http://llvm.org/devmtg/2011-11/Rotem_IntelOpenCLSDKVectorizer.pdf
http://llvm.org/devmtg/2011-11/Rotem_IntelOpenCLSDKVectorizer.pdf
http://www.cdl.uni-saarland.de/papers/karrenberg_wfv.pdf
http://www.cdl.uni-saarland.de/papers/karrenberg_wfv.pdf
http://www.cdl.uni-saarland.de/papers/karrenberg_wfv.pdf
http://www.cdl.uni-saarland.de/papers/karrenberg_wfv.pdf
http://www.cdl.uni-saarland.de/papers/karrenberg_opencl.pdf
http://www.cdl.uni-saarland.de/papers/karrenberg_opencl.pdf
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Workgroup Vectorization: 
Predication + bypass 

41 

Original  
Diverged Branch 

Automatic Predication (pseudo code) 
+ bypass 

int GID = get_global_id(0); 
if (GID == 0) 
    res = -1; 
else{ 
    res = sqrt(buff[GID]); 
    res += arg1; 
} 
 
 

int GID = get_global_id(0); 
mask = (GID == 0); 
res_then = -1; 
if(mask != 0) 
    res_else = sqrt(buff[GID]); 
    res_else += arg1; 
endif 
res = Select(mask, res_then, res_else); 

• Tradeoff between the cost of the branch and the saving 
• Included in the current release 
• Will be improved in the next release 
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Implicit vectorization 
Diverged branches 

• Diverged branches add performance penalty 

• Masks management 

• Low lane utilization 

• Expensive memory accesses 

• Avoid branches 

• Algorithmic changes 

• Use uniform iteration space 

• Kernel specialization 
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Implicit Vectorization Example 
Use uniform iteration space to avoid branches 

43 

int Gidx = get_global_id(0); 
float sum; 
 
if (Gidx % 2 == 0) 
{ 
    sum = inp[Gidx]+inp[Gidx+1];  
    out[Gidx/2] = sum; 
} 

*Local size is even number 

#define INPUT_SIZE… 
#define OUTPUT_SIZE (INPUT_SIZE/2) 
float inp[INPUT_SIZE]; 
float out[OUTPUT_SIZE]; 
 
global_size[0] = INPUT_SIZE; 

 

int Gidx = get_global_id(0); 
float sum; 
 
 
 

sum = inp[2*Gidx]+inp[2*Gidx+1];  

    out[Gidx] = sum; 
 

#define INPUT_SIZE… 
#define OUTPUT_SIZE (INPUT_SIZE/2) 
float inp[INPUT_SIZE]; 
float out[OUTPUT_SIZE]; 
 

global_size[0] = INPUT_SIZE/2; 
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Implicit Vectorization Example 
Construct the NDRange space to avoid branches on ID0 

44 

int Gid0 = get_global_id(0); 
int Gid1 = get_global_id(1); 
 
float res; 
 
if (!isError(buff1[Gid0])) 
{ 
    res= Compute( 
           buff1[Gid0],  
           buff2[Gid1] 
           ) 
} 

 
 
global_size[] = {K, L}; 
local_size[] = {M, N}; 
 

 

int Gid0 = get_global_id(0); 
int Gid1 = get_global_id(1); 
 
float res; 
 
if (!isError(buff1[Gid1])) 
{ 
    sum = Compute( 
           buff1[Gid1],  
           buff2[Gid0] 
           ) 
} 
 

 
//switch the implicit loops 
global_size[] = {L, K}; 
local_size[] = {N, M}; 

 

//Diverged //Uniform 
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Implicit Vectorization 
Diverged branch – Dynamic uniformity matters 
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if (buff[id0] > 0) 
{ 
     // compute positive number 
} 
else{ 
     // compute negative number 
} 

Consider an unavoidable diverged branch 

Both then and else include bypass 

Few input scenarios: 

• buff[] is entirely positive 

• Randomly spread values 

• Sorted smallest to largest 

• Each chunk of 1024 elements is sorted 

• Dynamic uniformity improves vector lane utilization  

• In some cases, (partial) sorting can be beneficial 
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Gather and Scatter Operations 

• The compiler generates scatter/gather on non-
consecutive memory accesses 

• Gather and Scatter instructions use int32 indices 

• get_global_id() is the source of indices 

• Guess what?  

• size_t get_global_id (uint dimindx) 

• size_t is unsigned int64 on Xeon Phi 

• The compiler needs to safely cast uint64 to int32 

• Or give-up using gather or scatter 
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Helping the Compiler generate  
Gather and Scatter Operations 

• Cast IDs to signed int 

• Avoid pointers manipulations 

• myBuff = buff + arg; 

• Use array notations 

• Buffer[id] 

• Indirect memory access is hard to track 

• Buffer[A[id]] 
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Bounds Check: 
Early-Exit and Late-Start Optimization 

48 

__kernel 
void abc(…) 
{ 
    size_t id = get_global_id(0); 
     
    if(id > LAST_ID) 
       return; 
 
    // Rest of kernel 
} 

 

void abc(…) 
{ 
    for (int k = sgid; k <= lgid; k+= VEC_SIZE) 
    { 
        if(id > LAST_ID) 
           return; 
 
        // Rest of vectorized and MASKED kernel  
    } 
} 

 

Original kernel Pseudo naïve generated code 

//Diverged 

void abc(…) 
{ 
    for (int k = sgid; k <= MIN(lgid, LAST_ID); k+= VEC_SIZE) 
    { 
 
        // Rest of vectorized kernel (NON-MASKED) 
    } 
} 

 

Pseudo optimized generated code 
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Early-Exit and Late-Start Optimization 
What’s the problem? 

• What’s the semantics of this kernel? 
 

• Which work-items should reach beyond 
the “return”? 

• 0 <= ID <= LAST_ID 
 

• What about ID==0x800000002? 
 

• The IF condition doesn’t define suffix 
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__kernel 
void abc(…) 
{ 
    int id = get_global_id(0); 
     
    if(id > LAST_ID) 
       return; 
 
    // Rest of kernel 
} 

 

Original kernel 

Recommendations: 
• Use ID bounds check only when required 
• Keep the ID bounds check size_t 

__kernel 
void abc(…) 
{ 
    size_t id = get_global_id(0); 
     
    if(id > LAST_ID) 
       return; 
 
    int_id = (int)id; 
    // Rest of kernel 
} 
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Implicit WI Loop Tail 

• The tail is executed in scalar loop 

• WG of size 2*VEC_SIZE executes faster than 2*VEC_SIZE-1 

• It’s harder with “barriers” 

• Kernels with barriers execute vectorized only if WG size is divisible by 
VEC_SIZE 

• Recommendation: favor local_size[0] divisible by VEC_SIZE 
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void myKernel(…) 
{ 
      int k; 
      for (int k = 0; k < get_local_size(0); k+= VEC_SIZE) 
 Vector_Kernel_Body; 
      k -= VEC_SIZE; 
      for (; k < get_local_size(0); k++) 
 Scalar_Kernel_Body; 
} 
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Cache optimizations  

• The memory subsystem is often the bottleneck 

• In-order execution implies greater sensitivity to 
memory latencies 

• Generic guidelines valid to Intel® Xeon Phi™ 
coprocessor too: 

• Reduce data size 

• Improve temporal and spatial locality 

• Apply tiling/blocking techniques to allow data re-use from 
caches 
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Blocking Example 

52 

for (i1 = 0; i1 < N; i1 ++){ 
    for (i2=0; i2 < N; i2++) { 
        OUT[i1] += compute(data[i1], data[i2]); 
    } 
} 

for (i2 = 0; i2 < N; i2 += BLOCK_SIZE) { 
    for (i1=0; i1 < N; i1 ++) { 
        for (i22=0; i22 < BLOCK_SIZE; i22 ++) { 
            OUT[i1] += compute(data[i1], data[i2 + i22]); 
        } 
    } 
} 

Blocking reduces GDDR traffic significantly for a class of algorithms 

How large should BLOCK_SIZE be?  
The largest such that four blocks stay in the L2 cache 
 See our OpenCL GEMM sample  
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Data layout and memory access pattern 

• Data access pattern impacts the performance greatly 

• Consecutive access is usually the fastest 

• AOS/SOA tradeoffs 

53 
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Consecutive Access Within the WG 
Row/Column major 
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__kernel 
void myKernel(…) 
{ 
      int k = get_global_id(0); 
      int i = get_global_id(1); 
 
      A[i * ROW_ZISE + k] += B[k * ROW_ZISE + i]; 
} 

 

Strided access Consecutive access 

void myKernel(…) 
{ 
      int I, k; 
      for (int i = 0; i < get_local_size(1); i++) 
           for (int k = 0; k < get_local_size(0); k+= VEC_SIZE) 
           { 
                 A[i * ROW_ZISE + k]16 += B[k * ROW_ZISE + i]gather_16; 
           } 
} 

 

Real kernel 

Pseudo generated code 

Recommendation: Prefer row major consecutive memory access 
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Consecutive Access Within the WG 
1D strided access 
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__kernel 
void myKernel(…) 
{ 
      int k = get_global_id(0); 
 
      A[k] += B[5 * k]; 
} 

 

Strided access Consecutive access 

void myKernel(…) 
{ 
      int k; 
      for (int k = 0; k < get_local_size(0); k+= VEC_SIZE) 
      { 
             A[k]16 += B[5 * k]gather_16; 
      } 
} 

 

Real kernel 

Pseudo generated code 

Recommendation: Prefer consecutive access along dimension zero 
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SoA vs AoS Data Layouts 
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SOA: 
 
double POSITION_X[SIZE_OF_BUFFER]; 
double POSITION_Y[SIZE_OF_BUFFER]; 
double POSITION_Z[SIZE_OF_BUFFER]; 
 

AOS: 
 
typedef struct{ 
 double X; 
 double Y; 
 double Z; 
}POS; 
POS POSITION[SIZE_OF_BUFFER]; 
 

SOA: 
• Consecutive access translates to 

plain vector load/store 
• May access to many pages 

simultaneously 
 

AOS: 
• Consecutive access translates to 

strided gather/scatter 
• Minimal simultaneous pages 

access 
 

• SOA usually faster for consecutive access pattern 

• AOS usually faster for random sparse access pattern 

• Random access translates to random gather for both 

• In random access, spatial locality much better with AOS 
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Data Prefetching –  
Intel® Xeon Phi™ Coprocessor HW 

57 

• Data prefetching is critical 

• L1 Data Cache – 32K per core 

• L2 Data/Instruction cache – 512K per core 

• HW Data prefetching to L2 cache 

• SW Prefetching 
– Instructions(*) for prefetching to the L1D and L2 caches 

– One cache line prefetch or gather prefetch 

– Prefetch in exclusive mode or not 

• Prefetch instruction won’t cause a page-fault! 

Processor events for measuring prefetch effectiveness 

* http://software.intel.com/sites/default/files/forum/278102/327364001en.pdf 

3:00 
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SW Prefetching 

Auto-prefetching 

• Identify strided memory access within a loop 

• Estimate loop iteration duration 

• Don’t overload HW resources 

• Insert prefetches to bring data on time to L2 and L1 caches 

• Support vectorized code including gather/scatter operations 

Manual Prefetching 

• When future iteration accesses are not predictable 

• For non strided access 

• For scalar code 

• Accesses that progress in an outer loop 

• Whenever auto-prefetching didn’t happen 

58 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners.  

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos 

How Can I help Prefetching? 

• Prefer consecutive memory accesses along the inner most 

loop (implicit dimension zero or explicit kernel inner loop) 

• Avoid pointer manipulations 

• Process the data directly at the global buffers 

• Use the “prefetch” built-in for your key kernel inputs and 

outputs 

• Important especially when the access pattern is not regular 

• Better batch few prefetch instructions together 

• As a start – add “prefetches” for the current iteration 
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Controlling Auto-Prefetching 
Intel® Xeon Phi™ Specific 

New clBuildProgram switch: -auto-prefetch-level=[0-3] 

• 0: Disable SW auto-prefetching 

• 1: Limited SW auto-prefetching (linear address only) 

• 2: Safe SW auto-prefetching: 1 + masked memory access 
<default> 

• 3: Advance SW auto-prefetching: 2 + scatter/gather 

 

• Controls per kernel compilation 

• When Vtune hot-spot on scatter/gather instructions 

• Try using auto-prefetch level 3 

• When Vtune hot-spot on prefetch instructions 

• Try using auto-prefetch level 1 

• If these don’t help, then add prefetch instructions 
manually based on Vtune’s top memory accesses 
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Black & Scholes 

Multi Xeon-Phi Devices 

• Multi Xeon-Phi has just been introduced 

• Optimized for shared-context 

• Multi-applications 
• Each on a separate Xeon Phi 

 

 

• Cluster with OpenCL 

• Nothing specific to OpenCL 

61 Measured on pre-production Xeon Phi part 
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Moving to Tools . . . 
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Kernel Builder 
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OpenCL* Kernels Design and Optimization Tool 

Easy development of OpenCL* Kernels for all Intel devices 

 Dynamic performance analysis & design tool with 

Offline Compilation support 

 Assign variables to the kernel and test its 

correctness 

 Analyze kernel performance based on:  

 group sizes 

 Optimization build  switches 

 device used 

 Supports MIC, CPU and GPU 

 Available on Windows and Linux 

http://software.intel.com/en-us/articles/webinar-creating-and-optimizing-opencl-applications-with-intel-opencl-tools  
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Analyze OpenCL* Applications  with Intel® VTune™ 
Amplifier XE 
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Universal Profiling Tool 

 Easy, low-overhead Hotspots analysis 

 Focused analysis: u-arch, parallelism, memory 

 Interactive source/assembly 

 Filter, group and sort your data 

 Smooth Visual Studio* integration 

 Windows, Linux.  Java, .NET, OpenCL*, ... 

Special OpenCL* support 

 Understand how your kernel performs and why 

 Optimize according to guidelines available with the 

Performance Optimization Guide 

http://software.intel.com/en-us/intel-vtune-amplifier-xe  
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Intel® VTune™ Amplifier XE Process/Module view 
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Intel® VTune™ Amplifier XE Top-Down View 
(from all modules) 
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Recommendations Summary 

• Provide enough WGs to allow high core utilization  

• Avoid light-weight kernels 

• Avoid branches, especially diverging branches 

• Use OOO queues 

• Parallel compute and transfer 

• More load-balancing 

• Linear access is the fastest 

• Use simple addressing [] 

• Prefer row major consecutive access 

• Add the “prefetch” built-in when auto-prefetch is not enough 
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Resources 

71 



Copyright© 2012, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners.  

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos 

Thank You!     Questions? 
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