
RTX-RSim
Accelerated Vulkan Room Response

Simulation for Time-of-Flight Imaging

Peter Thoman, Markus Wippler,
Robert Hranitzky, and Thomas Fahringer

peter.thoman@uibk.ac.at

IWOCL
2020

Background and Motivation

IWOCL 2020 – RTX-RSim 2

The Basic Idea

 In room response simulation for time of flight imaging, we are interested in
computing the propagation of light

 from a light source (L)

 through a room
(defined by some
geometry and
surface properties G)

 to a sensor array (S)

IWOCL 2020 – RTX-RSim 3

S

L

GIn the real world, L and S are part of a
Time-of-flight (ToF) camera assembly.

The Goal

 Unlike in e.g. image rendering or lighting
computations, the goal of the simulation is to compute
a radiosity time series for each geometric primitive

 Based on this time series, which simulates the actual
photons received by a ToF camera sensor, scene depth
can be reconstructed

 With RSim, since the exact depth is known, different
scenes and reconstruction schemes can be easily
evaluated

IWOCL 2020 – RTX-RSim 4

r

t

Use during development of better ToF hardware
implementations or software algorithms

Algorithm Overview

1. Read input data, including geometric primitives (𝐺),
their surface material information (𝜌), and initial impulse

2. Pre-computation of the per-triangle area (𝐴𝑖)

3. Mutual signal delay computation, storing the
signal delay for each triangle pair (𝑔𝑖,𝑔𝑗) in 𝜏𝑖𝑗

4. Mutual visibility computation, evaluating the energy transfer
between each triangle pair stochastically and storing in 𝐾𝑖𝑗

5. For each timestep 𝑡 ∈ [0,𝑇):

 Propagate radiosity, computing 𝑟𝑎𝑑𝑡,𝑖 for each triangle 𝑔𝑖 in all pairs (𝑔𝑖,𝑔𝑗)
based on 𝐾𝑖𝑗 and 𝑟𝑎𝑑𝑡−1,𝑖

6. Compute the distance from the light/sensor position to each triangle 𝑔𝑖, based on
𝑟𝑎𝑑[0,𝑇),𝑖

IWOCL 2020 – RTX-RSim 5

𝐴𝑖

𝑔𝑖

𝑔𝑗𝜏𝑖𝑗

𝑔𝑖

𝑔𝑗

Algorithm Performance and
Data Requirement Analysis

IWOCL 2020 – RTX-RSim 6

1. Input data prep.

2. Pre-compute 𝐴𝑖

3. Pre-compute 𝜏𝑖𝑗

4. Mutual visibility
comp. 𝐾𝑖𝑗

5. Radiosity
propagation
 𝑟𝑎𝑑[0,𝑇),𝑖

6. Compute distance

Analyse time complexity for each step of the
algorithm.

IWOCL 2020 – RTX-RSim 7

Algorithm Steps

1. Input data prep.

2. Pre-compute 𝐴𝑖

3. Pre-compute 𝜏𝑖𝑗

4. Mutual visibility
comp. 𝐾𝑖𝑗

5. Radiosity
propagation
 𝑟𝑎𝑑[0,𝑇),𝑖

6. Compute distance

Steps 1 and 2 iterate over 𝑵 triangles, with simple
I/O operations and area computation for each
element.

Readily identified as 𝑶 𝑵 complexity.

IWOCL 2020 – RTX-RSim 8

Algorithm Steps

1. Input data prep.

2. Pre-compute 𝐴𝑖

3. Pre-compute 𝜏𝑖𝑗

4. Mutual visibility
comp. 𝐾𝑖𝑗

5. Radiosity
propagation
 𝑟𝑎𝑑[0,𝑇),𝑖

6. Compute distance

Computing propagation delay for each pair of

triangles 𝑶 𝑵𝟐

However, the fixed factor is low, and compared to
the remaining phases, even 𝑵𝟐 complexity is largely
negligible.

IWOCL 2020 – RTX-RSim 9

Algorithm Steps

1. Input data prep.

2. Pre-compute 𝐴𝑖

3. Pre-compute 𝜏𝑖𝑗

4. Mutual visibility
comp. 𝐾𝑖𝑗

5. Radiosity
propagation
 𝑟𝑎𝑑[0,𝑇),𝑖

6. Compute distance

Stochastically evaluate the visibility between every
pair of triangles – in naïve implementation requires a
ray-triangle intersection check against all other
triangles in the scene. With 𝑺 stochastic samples:
 𝑂(𝑁3 ∗ 𝑆).

In practice, use geometric acceleration structure.
Current RSim on CPU uses octrees, resulting in a
reduction of average-case query complexity from
𝑂 𝑁 to 𝑂 log(𝑁) .

 𝑶(𝑵𝟐 ∗ 𝒍𝒐𝒈 𝑵 ∗ 𝑺)

IWOCL 2020 – RTX-RSim 10

Algorithm Steps

1. Input data prep.

2. Pre-compute 𝐴𝑖

3. Pre-compute 𝜏𝑖𝑗

4. Mutual visibility
comp. 𝐾𝑖𝑗

5. Radiosity
propagation
 𝑟𝑎𝑑[0,𝑇),𝑖

6. Compute distance

Uses signal delay 𝜏𝑖𝑗 and mutual visibility

information 𝐾𝑖𝑗, as well as the previous radiosity up

to the currently computed timestep 𝑟𝑎𝑑[0,t),𝑖.

For each timestep 𝑡 and each pair (𝑔𝑖,𝑔𝑗):

Propagate energy between triangles in the pair from
time 𝑡 − 𝜏𝑖,𝑗 according to mutual visibility as well as

their surface properties.

 𝑶(𝑵𝟐 ∗ 𝑻)

IWOCL 2020 – RTX-RSim 11

Algorithm Steps

1. Input data prep.

2. Pre-compute 𝐴𝑖

3. Pre-compute 𝜏𝑖𝑗

4. Mutual visibility
comp. 𝐾𝑖𝑗

5. Radiosity
propagation
 𝑟𝑎𝑑[0,𝑇),𝑖

6. Compute distance

Distance computation usually based on cross-
correlation of radiosity time series.

 𝑶 𝑵 ∗ 𝑻𝟐

T is usually much smaller than N, and fixed factor is
very small as well. Usually negligible overall, similar
to step 3.

IWOCL 2020 – RTX-RSim 12

Algorithm Steps

Measured Performance

 Scaling trend matches
observations on
algorithmic complexity

 Clearly mutual visibility
computation and
radiosity simulation are
main priority

IWOCL 2020 – RTX-RSim 13

0

20

40

60

80

100

120

Small Medium Large

R
el

at
iv

e
Pe

rf
o

rm
an

ce
 (

Sm
al

l =
 1

)

Mutual Visibility

Radiosity Simulation

Other

Vulkan Raytracing and Compute
for Room Response Simulation

IWOCL 2020 – RTX-RSim 14

Data Management

 A Vulkan implementation needs to be massively data-parallel to be efficient

 And we are constrained in the amount of data we can store on a GPU

 Data-centric view of the algorithm

IWOCL 2020 – RTX-RSim 15

Data Management

Contents Format Size

Triangles (G) Indexed vertex buffer 𝑁

Material information (ρ) 3 * FP32 𝑁

Raytracing Buffers Internal / opaque 𝑂(𝑁)

Sample Coordinates 2 * FP32 𝑆

Mutual Visibility (𝐾𝑖𝑗) FP16 𝑁2

Radiosity (𝑟𝑎𝑑) 4 * FP32 𝑁 ∗ 𝑇

Distance FP32 𝑁

IWOCL 2020 – RTX-RSim 16

 Generally, 𝑆 ≪ 𝑇 ≪ 𝑁, therefore 𝐾𝑖𝑗 dominates. FP16 sufficient!

 Signal delay 𝜏𝑖𝑗 recomputed instead of stored.

 Schematic representation of HW raytracing process

IWOCL 2020 – RTX-RSim 17

Raytracing

Build
Acceleration
Structures

Input Geometry Top-level AS

[] [] []

Bottom-level AS
…

Descriptor Set

Shader Binding Table

buff buff …

Raygen Hit

Miss

Ray Generation
Acceleration

Structure
Traversal

Closest Hit

Miss no

𝐾𝑖𝑗
yes

… GPU data structures

… RT shader

… Dataset

… Operation

… RT shader invocationHit?

… Fixed function
GPU operation

Hardware Raytracing for Mutual Visibility

 Geometry is static we can optimize AS build for traversal speed rather
than build/update performance

IWOCL 2020 – RTX-RSim 18

Raytracing

Build
Acceleration
Structures

Input Geometry Top-level AS

[] [] []

Bottom-level AS
…

Descriptor Set

Shader Binding Table

buff buff …

Raygen Hit

Miss

Ray Generation
Acceleration

Structure
Traversal

Closest Hit

Miss no

𝐾𝑖𝑗
yes

… GPU data structures

… RT shader

… Dataset

… Operation

… RT shader invocationHit?

… Fixed function
GPU operation

Hardware Raytracing for Mutual Visibility

 Descriptor Set: our RT shaders require read-only access to 𝐺, 𝜌, and the
Sample Coordinates buffer, as well as write access to 𝐾𝑖𝑗

 Shaders: only require ray generation and a single hit and miss shader

IWOCL 2020 – RTX-RSim 19

Raytracing

Build
Acceleration
Structures

Input Geometry Top-level AS

[] [] []

Bottom-level AS
…

Descriptor Set

Shader Binding Table

buff buff …

Raygen Hit

Miss

Ray Generation
Acceleration

Structure
Traversal

Closest Hit

Miss no

𝐾𝑖𝑗
yes

… GPU data structures

… RT shader

… Dataset

… Operation

… RT shader invocationHit?

… Fixed function
GPU operation

Hardware Raytracing for Mutual Visibility

Raytracing

 Ray generation: generate 𝑆 rays for every pair of triangles
(order independent, thus 𝑁²/2 − 𝑁 required size, 1D grid)

 Aggregate results and write to 𝐾𝑖𝑗

IWOCL 2020 – RTX-RSim 20

Build
Acceleration
Structures

Input Geometry Top-level AS

[] [] []

Bottom-level AS
…

Descriptor Set

Shader Binding Table

buff buff …

Raygen Hit

Miss

Ray Generation
Acceleration

Structure
Traversal

Closest Hit

Miss no

𝐾𝑖𝑗
yes

… GPU data structures

… RT shader

… Dataset

… Operation

… RT shader invocationHit?

… Fixed function
GPU operation

Hardware Raytracing for Mutual Visibility

Raytracing

 Miss shader: trivial, simply set visible=false for use in raygen shader

 Closest hit: check if expected triangle hit

IWOCL 2020 – RTX-RSim 21

Build
Acceleration
Structures

Input Geometry Top-level AS

[] [] []

Bottom-level AS
…

Descriptor Set

Shader Binding Table

buff buff …

Raygen Hit

Miss

Ray Generation
Acceleration

Structure
Traversal

Closest Hit

Miss no

𝐾𝑖𝑗
yes

… GPU data structures

… RT shader

… Dataset

… Operation

… RT shader invocationHit?

… Fixed function
GPU operation

Hardware Raytracing for Mutual Visibility

Compute Shader Radiosity Simulation

 Second compute-intensive phase, based on
mutual visibility result from HW raytracing

 Implemented using Vulkan compute shaders

 One shader invocation per time step

 Important: parallelized in 1D over 𝑁, not 2D over 𝑁2

 slightly lower potential at small sizes, but less synchronization

IWOCL 2020 – RTX-RSim 22

Simplified Radiosity
Compute Shader

 Excerpt of core loop over
destination triangles

 Note data-dependent access
to previous radiosity buffer

IWOCL 2020 – RTX-RSim 23

Data Streaming with Latency Hiding

IWOCL 2020 – RTX-RSim 24

Streaming Motivation

 Recall that mutual visibility buffer 𝐾𝑖𝑗 requires 𝑁2 entries

 Therefore GPU memory limited to low triangle counts

 Recomputation is not desirable slowdown by at least factor 10

 Solution: asynchronous streaming

 Minimize performance impact by suitable chunking and latency hiding

IWOCL 2020 – RTX-RSim 25

RTX-RSim Streaming Scheme

IWOCL 2020 – RTX-RSim 26

copy 𝐾𝐼𝐼𝑗 ⟶𝑏𝑢𝑓𝐴

copy 𝐾𝐼𝐼𝐼𝑗 ⟶𝑏𝑢𝑓𝐵

copy 𝐾𝐼𝑗 ⟶𝑏𝑢𝑓𝐴

copy 𝐾𝐼𝐼𝑗 ⟶𝑏𝑢𝑓𝐵

compute(𝑏𝑢𝑓𝐴)⟶ 𝑟𝑎𝑑𝑡𝑛+1𝐼

𝑡𝑛+1

𝑡

𝑡𝑛

…

compute(𝑏𝑢𝑓𝐵)⟶ 𝑟𝑎𝑑𝑡𝑛𝐼𝐼𝐼

𝑐ℎ𝑢𝑛𝑘 𝐼 𝑐ℎ𝑢𝑛𝑘 𝐼𝐼 𝑐ℎ𝑢𝑛𝑘 𝐼𝐼𝐼 𝑐ℎ𝑢𝑛𝑘 𝐼

compute(𝑏𝑢𝑓𝐵)⟶ 𝑟𝑎𝑑𝑡𝑛𝐼

compute(𝑏𝑢𝑓𝐴)⟶ 𝑟𝑎𝑑𝑡𝑛𝐼𝐼

⟶𝑏𝑢𝑓𝐵

⟶𝑟𝑎𝑑𝑡𝑛−1𝐼𝐼𝐼

true dependence

anti-dependence

 Requires two extra chunk buffers for double buffering

 Linear rather than quadratic in size!

Streaming for Mutual Visibility

 Mutual Visibility step generates 𝐾𝑖𝑗 also requires streaming

 Implementation simpler, only need
to stream the finished data out once

 Also less performance critical,
since mutual visibility computation
has higher per-element cost

We actually see speedup with
streaming in some results!

IWOCL 2020 – RTX-RSim 27

Compute 𝐾𝐼𝑗 Stream out 𝐾𝐼𝑗

Compute 𝐾𝐼𝐼𝑗

Compute 𝐾𝐼𝐼𝐼𝑗

Stream out 𝐾𝐼𝐼𝑗

Stream out 𝐾𝐼𝐼𝐼𝑗

Performance Evaluation
All results on an AMD Ryzen TR 2920X + NVIDIA GeForce RTX 2070 system

Note that CPU results are fully parallelized

IWOCL 2020 – RTX-RSim 28

Overall CPU vs. RTX-RSim Comparison

IWOCL 2020 – RTX-RSim 29

1 s

10 s

100 s

1000 s

10000 s

Small Medium Large

RTX-RSim (GPU)

RSim (CPU)

 CPU results roughly
linear on
logarithmic scale

 GPU result worse
at “Small” size
(insufficient
parallelism in
radiosity comp.)

 Factor ~20
improvement over
CPU at “Medium”
and larger

Speedup of individual phases

 Very high speedup in
mutual visibility phase
with hardware
raytracing

 Radiosity simulation
limited by:

 lack of parallelism
at “Small” size

 streaming
requirements at
“Large” size

IWOCL 2020 – RTX-RSim 30

1
1

2
.1

1
3

7
.3

1
5

5
.2

6
.7

2
2

.0

1
6

.6

8
.8

1
0

.0

1
0

.2

1.0

10.0

100.0

Small Medium Large

Mutual Visibility Radiosity Simulation Other

Streaming Performance Impact

 Raytracing actually
benefits from streaming
(hiding some transfer
latency)

 Roughly 40%
performance impact on
radiosity simulation due
to streaming

 Not ideal, but order of
magnitude better than
recomputation

IWOCL 2020 – RTX-RSim 31

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Raytracing Simulation Total

R
el

. P
er

f.
(1

.0
 =

 n
o

 s
tr

ea
m

in
g)

Small Medium

Summary & Conclusion

IWOCL 2020 – RTX-RSim 32

Conclusion

 Using new raytracing hardware for accelerating room response simulation is
both viable and effective

 Over factor 100 improvement in raytracing-heavy phases compared to CPU

 Vulkan compute shaders are a good cross-platform and cross-vendor
alternative to e.g. CUDA, OpenCL and SYCL if direct interaction with graphics
features is required

 Streaming with full latency hiding allows overcoming GPU memory limits for
this algorithm with moderate performance impact

 But is still limited by PCIe bandwidth

IWOCL 2020 – RTX-RSim 33

Thank you for your attention!

peter.thoman@uibk.ac.at

Partially funded by the FFG INPACT project.

