
Arm, Cambridge, UK

Presented by
Anastasia Stulova

C++ for OpenCL
Programming Language

Anastasia Stulova, Neil Hickey,

Sven van Haastregt, Marco Antognini, Kevin PeƟt

IWOCL 2020, 27–29 April 2020
© 2020 Arm Limited

Outline

IntroducƟon

Key features

Case study

TesƟng and evaluaƟon

Development flow

Related work

Resources

Future Work

2 © 2020 Arm Limited

Outline

IntroducƟon

Key features

Case study

TesƟng and evaluaƟon

Development flow

Related work

Resources

Future Work

3 © 2020 Arm Limited

Why C++ for OpenCL?

OpenCL is well-established technology in many areas.

Growth in complexity of applicaƟons run on accelerators.
Separate host-device flow allows max customizaƟon for any architecture.

Developing mature opƟmizing compilers is Ɵme consuming and not always pracƟcal.

4 © 2020 Arm Limited

What is C++ for OpenCL?

$ cat test.cl
template<class T> T add(T x, T y) {

return x + y;
}
__kernel void test(__global float *a, __global float *b) {

auto index = get_global_id(0);
a[index] = add(b[index], b[index + 1]);

}

$ clang -std=clc++ test.cl

It is not OpenCL C++ from the Khronos Registry!

5 © 2020 Arm Limited

Design goals

Backwards compaƟbility to OpenCL C (v2.0).
Reuse exisƟng code, libraries.
Reuse exisƟng tools.
Familiar development flow.

Enable as much of modern C++ as possible.
Gradual transiƟon to familiar C++ programming paradigms.

6 © 2020 Arm Limited

Outline

IntroducƟon

Key features

Case study

TesƟng and evaluaƟon

Development flow

Related work

Resources

Future Work

7 © 2020 Arm Limited

Differences with OpenCL C

Implicit conversions are stricter.
const int *ptrconst;
int *ptr = ptrconst; // invalid initialization discards const qualifier

Explicit representaƟon of NULL using nullptr.
restrict is not supported.

Clang provides experimental support of __restrict.

More restricted usage of goto.

ObjC Blocks are not supported.

8 © 2020 Arm Limited

C++ feature restricƟons

Virtual funcƟons.

ExcepƟons.

RTTI e.g. dynamic_cast, typeid.

Non-placement new/delete operators.

C++ std libs.

9 © 2020 Arm Limited

Improved OpenCL C features

Variadic macros.
Atomics.

Operators with C11 atomic types.
Legacy atomics with generic address space.

...

10 © 2020 Arm Limited

Address spaces in C++

In C++ there are abstracƟons that are specialized e.g. classes and objects.
__global MyClass c1; // MyClass allocated in global memory
c1.dosomething(); // implicitly dosomething(MyClass *this)
__local MyClass c2; // MyClass allocated in local memory
c2.dosomething(); // implicitly dosomething(MyClass *this)

What address space should the this parameter point to?

Class declaraƟons are parsed ahead of object instanƟaƟons.

Member funcƟon definiƟons are typically in a separate translaƟon unit.
Undesirable to duplicate member funcƟons (at source or binary) for each address space.

NegaƟvely impacts compilaƟon speed and binary size.

11 © 2020 Arm Limited

Address spaces in C++

In C++ there are abstracƟons that are specialized e.g. classes and objects.
__global MyClass c1; // MyClass allocated in global memory
c1.dosomething(); // implicitly dosomething(MyClass *this)
__local MyClass c2; // MyClass allocated in local memory
c2.dosomething(); // implicitly dosomething(MyClass *this)

What address space should the this parameter point to?

Class declaraƟons are parsed ahead of object instanƟaƟons.

Member funcƟon definiƟons are typically in a separate translaƟon unit.

Undesirable to duplicate member funcƟons (at source or binary) for each address space.
NegaƟvely impacts compilaƟon speed and binary size.

11 © 2020 Arm Limited

Address spaces in C++

In C++ there are abstracƟons that are specialized e.g. classes and objects.
__global MyClass c1; // MyClass allocated in global memory
c1.dosomething(); // implicitly dosomething(MyClass *this)
__local MyClass c2; // MyClass allocated in local memory
c2.dosomething(); // implicitly dosomething(MyClass *this)

What address space should the this parameter point to?

Class declaraƟons are parsed ahead of object instanƟaƟons.

Member funcƟon definiƟons are typically in a separate translaƟon unit.
Undesirable to duplicate member funcƟons (at source or binary) for each address space.

NegaƟvely impacts compilaƟon speed and binary size.

11 © 2020 Arm Limited

Address spaces - OpenCL approach

OpenCL v2.0 defines the generic address space.
__global int a;
__local int b;
/*__generic*/ int *ptr;
if (c)

ptr = &a;
else

ptr = &b;
// ptr can point into a segment in either local or global memory

We use generic address space for abstract behavior in C++.
Note: __constant cannot be converted to/from /*__generic*/.

12 © 2020 Arm Limited

Address spaces - OpenCL approach

OpenCL v2.0 defines the generic address space.
__global int a;
__local int b;
/*__generic*/ int *ptr;
if (c)

ptr = &a;
else

ptr = &b;
// ptr can point into a segment in either local or global memory

We use generic address space for abstract behavior in C++.
Note: __constant cannot be converted to/from /*__generic*/.

12 © 2020 Arm Limited

Address spaces - OpenCL approach example

1 class MyClass {
2 void dosomething(); // void dosomething(__generic MyClass *this)
3 // MyClass(__generic MyClass *this)
4 MyClass(MyClass &c); // MyClass(__generic MyClass *this, __generic MyClass &c)
5 MyClass(MyClass &c) __local; // MyClass(__local MyClass *this, __generic MyClass &c)
6 }
7 __global MyClass c1; // calls ctor line 3 where arg 'this' is an addr space cast of
8 // ptr to 'c1' from '__global MyClass *' to '__generic MyClass *'
9 __local MyClass c2(c1); // calls ctor line 5 where arg 'this' is an allocation 'c2' of
10 // 'MyClass' in __local address space, 2nd arg is as on line 7
11 c1.dosomething(); // calls method from line 2 casting ptr to 'c1' to __generic
12 c2.dosomething(); // calls method from line 2 casting ptr to 'c2' to __generic

Note: methods used with __constant addr space objects have to be overloaded using address
space method qualifier explicitly.

13 © 2020 Arm Limited

Address spaces - OpenCL approach example

1 class MyClass {
2 void dosomething(); // void dosomething(__generic MyClass *this)
3 // MyClass(__generic MyClass *this)
4 MyClass(MyClass &c); // MyClass(__generic MyClass *this, __generic MyClass &c)
5 MyClass(MyClass &c) __local; // MyClass(__local MyClass *this, __generic MyClass &c)
6 }
7 __global MyClass c1; // calls ctor line 3 where arg 'this' is an addr space cast of
8 // ptr to 'c1' from '__global MyClass *' to '__generic MyClass *'
9 __local MyClass c2(c1); // calls ctor line 5 where arg 'this' is an allocation 'c2' of
10 // 'MyClass' in __local address space, 2nd arg is as on line 7
11 c1.dosomething(); // calls method from line 2 casting ptr to 'c1' to __generic
12 c2.dosomething(); // calls method from line 2 casting ptr to 'c2' to __generic

Note: methods used with __constant addr space objects have to be overloaded using address
space method qualifier explicitly.

13 © 2020 Arm Limited

Address spaces - other rules

Default address space follows OpenCL C v2.0 logic.
References inherit rules from pointers => /*__generic*/.
StaƟc data members are in __global.
No default for non-pointer/reference dependent types (i.e. template params), decltype or alias
declaraƟons.

Lambdas can be qualified by an address space like methods.
[&] (int i) __global { ... };

Special addrspace_cast operator.
/*__generic*/ int *genptr = ...;
__global int *globptr = addrspace_cast<__global int*>(genptr);

More elaborate descripƟon in the official documentaƟon.
https://github.com/KhronosGroup/Khronosdotorg/blob/master/api/opencl/assets/CXX_for_OpenCL.pdf

14 © 2020 Arm Limited

https://github.com/KhronosGroup/Khronosdotorg/blob/master/api/opencl/assets/CXX_for_OpenCL.pdf

Global constructors/destructors

Global variables are shared among kernels.
IniƟalizaƟon/destrucƟon cannot be done at the boundaries of kernel execuƟon.

SoluƟon.
ctors - changed iniƟalizaƟon stub to a kernel funcƟon.

Can be enqueued from host before kernel execuƟons.
In OpenCL v2.0 drivers applicaƟon has to perform this step manually.
Clang generates a kernel with iniƟalizaƟon code per translaƟon unit that can be queried from the binary (see
https://clang.llvm.org/docs/UsersManual.html#constructing-and-destroying-global-objects).

dtors - WIP, requires large ABI change due to incompaƟbility with OpenCL execuƟon model.
PotenƟally less criƟcal as program context is destroyed at this point.

15 © 2020 Arm Limited

https://clang.llvm.org/docs/UsersManual.html#constructing-and-destroying-global-objects

Global constructors/destructors

Global variables are shared among kernels.
IniƟalizaƟon/destrucƟon cannot be done at the boundaries of kernel execuƟon.

SoluƟon.
ctors - changed iniƟalizaƟon stub to a kernel funcƟon.

Can be enqueued from host before kernel execuƟons.
In OpenCL v2.0 drivers applicaƟon has to perform this step manually.
Clang generates a kernel with iniƟalizaƟon code per translaƟon unit that can be queried from the binary (see
https://clang.llvm.org/docs/UsersManual.html#constructing-and-destroying-global-objects).

dtors - WIP, requires large ABI change due to incompaƟbility with OpenCL execuƟon model.
PotenƟally less criƟcal as program context is destroyed at this point.

15 © 2020 Arm Limited

https://clang.llvm.org/docs/UsersManual.html#constructing-and-destroying-global-objects

Global constructors/destructors

Global variables are shared among kernels.
IniƟalizaƟon/destrucƟon cannot be done at the boundaries of kernel execuƟon.

SoluƟon.
ctors - changed iniƟalizaƟon stub to a kernel funcƟon.

Can be enqueued from host before kernel execuƟons.
In OpenCL v2.0 drivers applicaƟon has to perform this step manually.
Clang generates a kernel with iniƟalizaƟon code per translaƟon unit that can be queried from the binary (see
https://clang.llvm.org/docs/UsersManual.html#constructing-and-destroying-global-objects).

dtors - WIP, requires large ABI change due to incompaƟbility with OpenCL execuƟon model.
PotenƟally less criƟcal as program context is destroyed at this point.

15 © 2020 Arm Limited

https://clang.llvm.org/docs/UsersManual.html#constructing-and-destroying-global-objects

Kernel funcƟon in C++ mode

OpenCL host API:
clCreateKernel(... "foo" ...); // create kernel with the name 'foo'

Name has to be preserved during the device compilaƟon to be referred to/from the host.
Prevent mangling i.e. disallow C++-like funcƟon features:

Overloading.
Use as templates.
Use as member funcƟons.

=> Implicitly extern C.

16 © 2020 Arm Limited

Kernel funcƟon in C++ mode

OpenCL host API:
clCreateKernel(... "foo" ...); // create kernel with the name 'foo'

Name has to be preserved during the device compilaƟon to be referred to/from the host.
Prevent mangling i.e. disallow C++-like funcƟon features:

Overloading.
Use as templates.
Use as member funcƟons.

=> Implicitly extern C.

16 © 2020 Arm Limited

Outline

IntroducƟon

Key features

Case study

TesƟng and evaluaƟon

Development flow

Related work

Resources

Future Work

17 © 2020 Arm Limited

ConvoluƟon from Arm Compute Library - row computaƟon

StaƟcally compute sum of N factors!

template<typename T /*conv data type*/, size_t N /*conv dim*/>
class onerow
{

uchar16 data;
const short (&mat)[N]; // matrix of coefficients
...
template<size_t S /*step number*/> T mulacc() = delete;
template<> T mulacc<0>() { return vec_cast<T>(data.s01234567) * mat[0];}
template<> T mulacc<1>() { return vec_cast<T>(data.s12345678) * mat[1] + mulacc<0>();}
...
// up to (conv dim - 1)
template<> T mulacc<8>() { return vec_cast<T>(data.s89abcdef) * mat[8] + mulacc<7>();}

};

18 © 2020 Arm Limited

ConvoluƟon conƟnued - NxN

Compute full NxN convoluƟon using onerow helper.

template<typename T, size_t N>
inline T convolution(Image &src, const short (&mat)[N][N], uint scale)
{

T pixels = 0;

for (size_t i = 0; i < N; ++i)
{
uchar16 temp = vload16(0, src.offset(-((int)N) / 2, i - N / 2));
onerow<T, N> rowi(temp, mat[i]);
pixels += rowi.template mulacc<N - 1>();

}

return pixels / static_cast<T>(scale);
}

19 © 2020 Arm Limited

ConvoluƟon conƟnued - kernel with 3x3 convoluƟon
class Image {

...
__global uchar *offset(int x, int y);

};

// using vector convert functions from OpenCL C
template<typename To, typename From> inline To vec_cast(From ty);

__kernel void convolution3x3_static(...) {
...
short8 pixels = convolution<short8, 3>

(src, {{MAT0, MAT1, MAT2}, {MAT3, MAT4, MAT5}, {MAT6, MAT7, MAT8}}, SCALE);

OpenCL C sources available in
https://github.com/ARM-software/ComputeLibrary/tree/master/src/core/CL/cl_kernels.

~200 lines of convoluƟon (3x3, 5x5, 7x7, 9x9) can be replaced by ~30 lines in C++ for OpenCL.

Without observable performance loss!

20 © 2020 Arm Limited

https://github.com/ARM-software/ComputeLibrary/tree/master/src/core/CL/cl_kernels

ConvoluƟon conƟnued - kernel with 3x3 convoluƟon
class Image {

...
__global uchar *offset(int x, int y);

};

// using vector convert functions from OpenCL C
template<typename To, typename From> inline To vec_cast(From ty);

__kernel void convolution3x3_static(...) {
...
short8 pixels = convolution<short8, 3>

(src, {{MAT0, MAT1, MAT2}, {MAT3, MAT4, MAT5}, {MAT6, MAT7, MAT8}}, SCALE);

OpenCL C sources available in
https://github.com/ARM-software/ComputeLibrary/tree/master/src/core/CL/cl_kernels.

~200 lines of convoluƟon (3x3, 5x5, 7x7, 9x9) can be replaced by ~30 lines in C++ for OpenCL.

Without observable performance loss!

20 © 2020 Arm Limited

https://github.com/ARM-software/ComputeLibrary/tree/master/src/core/CL/cl_kernels

Outline

IntroducƟon

Key features

Case study

TesƟng and evaluaƟon

Development flow

Related work

Resources

Future Work

21 © 2020 Arm Limited

EvaluaƟon

OpenCL C content is nearly fully supported.
Most of conformance v2.0 tests pass (11 fail out of 1384).
ValidaƟon on benchmarks is in progress.

Experimental tesƟng for Vulkan using clspv and clvk.
PorƟng applicaƟons from other languages.

ALICE experiment at CERN.

22 © 2020 Arm Limited

PorƟng ALICE event reconstrucƟon to C++ for OpenCL

ALICE: A Large Ion Collider Experiment.
From 2021 it will record collisions of lead nuclei at the LHC at
a rate of 50 kHz.
Several thousand parƟcles in each collision, whose
trajectories must be found (using measured 3d space points).
All data will be processed in real Ɵme using GPUs.

WriƩen in generic C++ with preprocessor macros subsƟtuted into language keywords
(https://github.com/AliceO2Group/AliceO2).

CUDA (since 2010) and OpenCL 1.2 with AMD C++ extensions (since 2015).
Ongoing research to support HIP and C++ for OpenCL.

Fully compiled (~12K lines) from C++ for OpenCL down to SPIR-V using clang-10 and llvm-spirv.
CERN to test SPIR-V injecƟon on Mali Driver.

Image courtesy of CERN

23 © 2020 Arm Limited

https://github.com/AliceO2Group/AliceO2

Overheads - compile and runƟme, binary size

OpenCL features are handled in the same way as for OpenCL C.

C vs C++ is an old debate.

Most of C style features have the same overhead in C++.
C++ oŌen hides overheads.

E.g. implicit object pointer parameter.

C++ language facilitates more opƟmizaƟons.
Modern compilers are very good at opƟmizing C++ code.

E.g. devirtualizaƟon, ctor/dtor inlining.

A lot of material about wriƟng low overhead C++ code.
ISO/IEC TR 18015:2006 - Technical Report on C++ Performance.

24 © 2020 Arm Limited

Outline

IntroducƟon

Key features

Case study

TesƟng and evaluaƟon

Development flow

Related work

Resources

Future Work

25 © 2020 Arm Limited

How can applicaƟons use C++ for OpenCL?

26 © 2020 Arm Limited

Outline

IntroducƟon

Key features

Case study

TesƟng and evaluaƟon

Development flow

Related work

Resources

Future Work

27 © 2020 Arm Limited

Comparison to other languages

Language Vendors Host/dev perf tuning Host/dev compilaƟon
Single
source

Dev flow

C++ for OpenCL MulƟple
Fully manual for any
arch

Separate phases No OpenCL style

SYCL MulƟple
Compiler / limited
manual

Likely separate phases Yes
C++ library
/ metapro-
gramming

CUDA Nvidia Compiler
Likely mixed separate +
combined phases

Yes C++ dialect

HIP MulƟple Compiler Currently separate Yes C++ dialect
Metal SL Apple Fully manual Separate phases No OpenCL style

28 © 2020 Arm Limited

Outline

IntroducƟon

Key features

Case study

TesƟng and evaluaƟon

Development flow

Related work

Resources

Future Work

29 © 2020 Arm Limited

Resources

Detailed documentaƟon can be found in
https://github.com/KhronosGroup/Khronosdotorg/blob/master/api/opencl/assets/CXX_for_OpenCL.pdf

Any feedback to documentaƟon can be submiƩed in https://github.com/KhronosGroup/OpenCL-Docs

InformaƟon about support in Clang https://clang.llvm.org/docs/UsersManual.html#cxx-for-opencl

ImplementaƟon status can be tracked through https://clang.llvm.org/docs/OpenCLSupport.html

Report bugs and any missing features on https://bugs.llvm.org/

30 © 2020 Arm Limited

https://github.com/KhronosGroup/Khronosdotorg/blob/master/api/opencl/assets/CXX_for_OpenCL.pdf
https://github.com/KhronosGroup/OpenCL-Docs
https://clang.llvm.org/docs/UsersManual.html#cxx-for-opencl
https://clang.llvm.org/docs/OpenCLSupport.html
https://bugs.llvm.org/

Outline

IntroducƟon

Key features

Case study

TesƟng and evaluaƟon

Development flow

Related work

Resources

Future Work

31 © 2020 Arm Limited

Future work

The plan from the community:

Complete implementaƟon in Clang i.e. missing features or bugs.

Finalize documentaƟon.

Add support for C++ libraries.

Perform full funcƟonality tesƟng.

Provide more support to/maintenance for the applicaƟon developers.

32 © 2020 Arm Limited

Special thanks to the community!!! <3

To John McCall from Apple for invaluable feedback and reviews!
To David Rohr from CERN for tesƟng, submiƫng bugs, providing suggesƟons and being so
paƟent while waiƟng for bugs to be fixed!

Very moƟvaƟng use of the new language for experiments at CERN!

To OpenCL WG at Khronos Group for supporƟng the idea and hosƟng the documentaƟon!

33 © 2020 Arm Limited

Thanks!
Presented by
Anastasia Stulova

The Arm trademarks featured in this presentaƟon are registered trademarks or

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All

rights reserved. All other marks featured may be trademarks of their respecƟve

owners.

www.arm.com/company/policies/trademarks

© 2020 Arm Limited

	
	Outline
	Introduction
	Outline
	Why C++ for OpenCL?
	What is C++ for OpenCL?
	Design goals

	Key features
	Outline
	Differences with OpenCL C
	C++ feature restrictions
	Improved OpenCL C features
	Address spaces in C++
	Address spaces - OpenCL approach
	Address spaces - OpenCL approach example
	Address spaces - other rules
	Global constructors/destructors
	Kernel function in C++ mode

	Case study
	Outline
	Convolution from Arm Compute Library - row computation
	Convolution continued - NxN
	Convolution continued - kernel with 3x3 convolution

	Testing and evaluation
	Outline
	Evaluation
	Porting ALICE event reconstruction to C++ for OpenCL
	Overheads - compile and runtime, binary size

	Development flow
	Outline
	How can applications use C++ for OpenCL?

	Related work
	Outline
	Comparison to other languages

	Resources
	Outline
	Resources

	Future Work
	Outline
	Future work
	Special thanks to the community!!! <3
	

