
IWOCL / SYCLCON 2020

EVALUATING THE PERFORMANCE OF
THE HIPSYCL TOOLCHAIN FOR HPC
KERNELS ON NVIDIA V100 GPUS

erhtjhtyhy

BRIAN HOMERDING
Argonne National Laboratory
Speaker

JOHN TRAMM
Argonne National Laboratory

HPC LEADERSHIP COMPUTING SYSTEMS

§ Summit [1] – Oak Ridge National Laboratory
– IBM CPUs
– NVIDIA GPUs

§ Aurora [2] – Argonne National Laboratory
– Intel CPUs
– Intel GPUs

§ Frontier [3] – Oak Ridge National Laboratory
– AMD CPUs
– AMD GPUs

§ Increasing in diversity
2

TECHNOLOGIES USED IN THIS STUDY

§ CUDA [4] – supported on Summit.
– Designed to work with C, C++ and Fortran.
– Provides scalable programming by utilizing abstractions for the hierarch of

thread groups, shared memories and barrier synchronization.
§ SYCL [5] – supported on Aurora.

– Builds on the underlying concepts of OpenCL while including the strengths of
single-source C++.

– Includes hierarchical parallelism syntax and separation of data access from
data storage.

§ hipSYCL [6] – SYCL compiler targeting AMD and NVIDIA GPUs.
– Aksel Alpay - https://github.com/illuhad/hipSYCL

3

HIPSYCL

§ Provides a SYCL 1.2.1 implementation built on top of NVIDIA CUDA /
AMD HIP.

§ Includes two components.
– SYCL runtime on top of CUDA / HIP runtime.
– Compiler plugin to compile SYCL using CUDA frontend of Clang.

§ Building on top of CUDA allows us to use the NVIDIA performance
analysis toolset.

4

5

1. We implement a SYCL variant of the RAJA Performance Suite [7] and port two
HPC mini-apps to CUDA and SYCL.

2. We collect performance data on the RAJA Performance Suite for the
programming models and toolchains of interest.

3. We investigate significant performance differences found in the benchmark
suite.

4. We analyze the performance of two HPC mini-apps of interest: an N-body
mini-app and a Monte Carlo neutron transport mini-app.

OUR CONTRIBUTIONS

BENCHMARKS

§ RAJA Performance Suite
– Collection of benchmark kernels of interest to the HPC community.
– Provides many small kernels for collecting many data points.

§ N-Body [8]
– Simple simulation application for a dynamical system of particles.

§ XSBench [9]
– Computationally representative of Monte Carlo transport applications.

6

7

Collection of performance benchmarks
with RAJA and non-RAJA variants.
Checksums verified against serial
execution.
§ Basic (simple)

DAXBY, IF_QUAD, INIT3, INIT_VIEW1D,
INIT_VIEW1D_OFFSET, MULADDSUB,
NESTED_INIT, REDUCE3_INT, TRAP_INT

§ Stream (stream)
ADD, COPY, DOT, MUL, TRIAD

§ LCALS (loop optimizations)
DIFF_PREDICT, EOS, FIRST_DIFF, HYDRO_1D,
HYDRO_2D, INT_PREDICT, PLANCKIAN

§ PolyBench (polyhedral optimizations)
2MM, 3MM, ADI, ATAX, FDTD_2D,
FLOYD_ARSHALL, GEMM, GEMVER, GESUMMV,
HEAT_3D, JACOBI_1D, JACOBI_2D, MVT

§ Apps (applications)
DEL_DOT_VEC_2D, ENERGY, FIR, LTIMES,
LTIMES_NOVIEW, PRESSURE, VOL3D

RAJA PERFORMANCE SUITE

PORTING FOR COMPARABILITY

8

• Block size and
grid size

• Indexing

• Memory
management

PORTING FOR COMPARABILITY

9

• Block size and
grid size

• Indexing

• Memory
management

PORTING FOR COMPARABILITY

10

• Block size and
grid size

• Indexing

• Memory
management

PORTING FOR COMPARABILITY

11

• Block size and
grid size

• Indexing

• Memory
management

DATA MOVEMENT

§ No explicit data movement in SYCL.

§ DPC++ USM proposal would allow for a direct performance comparison
including data movement.

12

PERFORMANCE ANALYSIS METHODOLOGY

§ Hardware – NVIDIA V100 GPU
§ hipSYCL – git revision 1779e9a
§ CUDA – version 10.0.130

§ Utilized nvprof to collect kernel timing without the time spent on memory transfer.

Type Time(%) Time	 Calls	 Avg	 Min	 Max Name

GPU	activities:	 10.60% 692.74ms 4460 155.32us 1.2470us 101.74ms [CUDA	memcpy HtoD]

2.64% 172.26ms	 16000 10.766us 9.7910us 13.120us rajaperf::lcals::first_diff(double*,	double*,	long)

13

PERFORMANCE SUITE
Results

14

• Problem size is scaled by a factor of
five to fill the GPU.

• Five kernels were not measured due
to missing features.

• Most kernels are show similar
performance.

• Memory bandwidth utilization.
• CUDA is using non-coherent memory

loads.

PERFORMANCE SUITE
Results

15

• Problem size is scaled by a factor of
five to fill the GPU

• Five kernels were not measured due
to missing features

• Most kernels are show similar
performance

HPC MINI-APPS

N-BODY SIMULATION MINI-APP

§ Simulation of point masses.

§ Position of the particles are computed using finite difference methods.

§ Each particle stores the position, velocity and acceleration.

§ At each timestep the force of all particles acting on one another is calculated.
– 𝑂(𝑛!)

17

N-BODY
Results

18

Metric SYCL CUDA

FP Instructions (single) 128000000 128000000

Control-Flow
Instructions 28000048 25004048

Load/Store Instructions 16018000 16018000

Misc Instructions 4010096 26192

Similar performance metrics
• Memory throughput
• Occupancy

764.78
887.66

0

100

200

300

400

500

600

700

800

900

1000

Nbody

A
ve

ra
ge

 K
er

ne
l

Ti
m

e
(m

s)

CUDA

hipSYCL

19

§ Mini-app representing key kernel in Monte Carlo
neutron transport for nuclear reactor simulation

§ Driven by large tables of cross section data that
specifies probabilities of interactions between
neutron and different types of atoms

§ Features a highly randomized memory access
pattern that is typically challenging to get running
efficiently on most HPC architectures

§ Open source, available on github
Ø github.com/ANL-CESAR/XSBench

Neutron

Atom

Example of cross section data for 1 atom type

XSBENCH
Results

20

48

26
15

65

28
16

62

27
17

0

10

20

30

40

50

60

70

Unionized Hash Nuclide

FO
M

XSBench Lookup Method Performance on V100
(Higher is Better)

CUDA CUDA (Optimized) hipSYCL

hipSYCL
Load #1
Load #2
Load #3
Load #4
Load #5
Load #6
Load #7
Load #8
Load #9
Load #10
Load #11
Load #12
FLOPS...

CUDA
Load #1
Load #2
FLOPS...
Load #3
Load #4
Load #5
Load #6
Load #7
Load #8
Load #9
FLOPS...
Load #10
FLOPS...
Load #11
FLOPS...
Load #12
FLOPS... Uses __ldg() to force contiguous load instructions

CONCLUSIONS

§ SYCL using hipSYCL is showing competitive performance on NVIDIA devices.

§ Common performance analysis tool very useful. Many subtle details when using
difference performance measurement tools on different devices with different
programming models.

§ Cross programming model studies can provide insight into optimization
opportunities.

21

FUTURE WORK

§ Utilize larger HPC codes running multi-node problem sizes.

§ Investigate the performance of additional toolchains for SYCL and CUDA.

§ Investigate performance of the same code across various GPUs.

§ Explore the performance of Intel’s DPC++ extensions.

22

ACKNOWLEDGEMENTS

§ ALCF, ANL and DOE
§ ALCF is supported by DOE/SC under contract DE-AC02-06CH11357

§ This research was supported by the Exascale Computing Project (17-SC-20-
SC), a collaborative effort of two U.S. Department of Energy organizations
(Office of Science and the National Nuclear Security Administration) responsible
for the planning and preparation of a capable exascale ecosystem, including
software, applications, hardware, advanced system engineering, and early
testbed platforms, in support of the nation’s exascale computing imperative.

THANK YOU

REFERENCES

[1] 2020. Summit. https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/.
[2] 2020. Aurora. https://press3.mcs.anl.gov/aurora
[3] 2020. Frontier. https://www.olcf.ornl.gov/frontier
[4] NVIDIA Corporation. 2020. CUDA C++ Programming Guide.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
[5] Khronos OpenCL Working Group SYCL subgroup. 2018. SYCL Specification.
[6] Aksel Alpay. 2019. hipSYCL. https://github.com/illuhad/hipSYCL
[7] Richard D. Hornung and Holger E. Hones. 2020. RAJA Performance Suite.

https://github.com/LLNL/RAJAPerf
[8] Fabio Barruffa. 2020. N-Body Demo. https://github.com/fbaru-dev/nbody-demo
[9] John R. Tramm. 2020. XSBench: The Monte Carlo macroscopic cross section

lookup benchmark. https://github.com/ANL-CESAR/XSBench
25

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://press3.mcs.anl.gov/aurora
https://www.olcf.ornl.gov/frontier
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://github.com/illuhad/hipSYCL
https://github.com/LLNL/RAJAPerf
https://github.com/fbaru-dev/nbody-demo
https://github.com/ANL-CESAR/XSBench

