
Characterizing Optimizations
To Memory Access Patterns
Using Architecture
Independent Program Features
P R ES E N T E R : A D I T YA C H I L U K U R I [1]

C O - A U T H O R S : J O S H M I LT H O R P E [1] , B EA U J O H N S TO N [2 , 1]

[1] A U S T R A L I A N N AT I O N A L U N I V E R S I T Y

[2] O A K R I D G E N AT I O N A L L A B O R ATO R Y

Introducing: Heterogenous Computing
• Shift towards incorporating diverse range of computer architectures: CPUs, GPUs,
FPGAs, ASICs.

• OpenCL language designed for code to be executed on diverse hardware “targets”.

2

Why Memory Access Behaviour Matters

3

• Memory accesses are a major cause of bottlenecks on modern computer architectures.

• Spatial Locality for Caches: Programs that frequently access nearby memory addresses tend to
have better performance.

CPU L1 (~1 cycle)

Last Level (LL) Cache (~10 cycles)

RAM (~200 cycles)

Data Read/Write

…

4

What patterns in the memory accesses performed by a program
are good for performance on varying hardware targets?

Problem Statement

“Develop a method to help HPC developers understand how
their code interacts with memory – independent of the
target hardware platform.”

5

Introducing: AIWC ('air-wik)
• Architecture Independent Workload Characterisation (AIWC) tool for OpenCL – Developed by
Beau Johnston and Josh Milthorpe.

• Plugin for the Oclgrind simulator for OpenCL.
➢ Executes OpenCL kernels on abstract virtual OpenCL devices

➢ Follows OpenCL memory and execution model

• Architecture-Independent Oclgrind simulation allows for architecture-independent analysis of
OpenCL code.

6

Introducing: AIWC ('air-wik)
• Collect metrics that characterise parallel programs.

• Metrics collected are independent of the hardware target of an OpenCL kernel.

• Memory based metrics:
➢ Total Memory Footprint: How much memory access occurs. (Lower is better)

➢ Memory Address Entropy: Measure of spread of memory regions accessed. (Lower is better)

7

A Test-Case Kernel for Optimisation

__kernel void simpleMultiply(__global float *A,
__global float *B,
__global float *C,
int N)

{
float acc = 0.0f;
for (int k = 0; k < N; ++k) {

acc += B[k * N + globalCol]
* A[globalRow * N + k];

}
// Store the result
C[globalRow * N + globalCol] = acc;

}

8

(NVIDIA Corporation. Cuda C best practices guide. 2019.)

Coalescing Accesses to Matrix A (coalescedA)

9

Coalescing Accesses to Matrix B (coalescedAB)

10

Efficient Local Memory Usage (coalescedABT)

11

Performance Results

12

Creating new AIWC Metrics!
• Observation: Accesses to “local” memory (or fast access on-chip memory) are good
➢ New Metric: Relative Local Memory Usage (RLMU). (Higher is better)

• Observation: Parallel accesses to nearby memory addresses are good
➢ New Metric: Parallel Spatial Locality (PSL).

13

10110110101001
10110110101010
01011001101011
11000100110101
11101101000010

10110110101001
10110110101010
01011001101011
11000100110101
11101101000010

Set of memory addresses Set of memory addresses
3 bits skipped

Entropy Statistic
(Real number)

The Parallel Spatial Locality Metric
Formal Definition:
Calculate entropy (or spread) of memory addresses at each timestep.
Repeat entropy calculations at varying “skipped-bits”
Calculate the following:

𝑃𝑆𝐿𝑛−𝑏𝑖𝑡𝑠(𝑡) =

𝛼∈𝐴𝑛(𝑡)

𝑝𝛼 log2(𝑝𝛼
−1) (1)

with 𝐴𝑛(𝑡) the set of addresses accessed at time 𝑡 accessed after skipping 𝑛
bits, 𝑝𝛼 the probability of a specific address.
Average this value across all timesteps of program execution to obtain
𝑃𝑆𝐿𝑛−𝑏𝑖𝑡𝑠.
A higher number of threads in an OpenCL workgroup leads to higher 𝑃𝑆𝐿𝑛−𝑏𝑖𝑡𝑠
values. We normalise the 𝑃𝑆𝐿𝑛−𝑏𝑖𝑡𝑠 by dividing by log2(𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠−𝑝𝑒𝑟−𝑔𝑟𝑜𝑢𝑝) .

• Main takeaway: the steeper the drop in PSL as the number of bits skipped
increases, the more localised the memory accesses are.

14

Preliminary Findings

15

Findings

16

Testing on Extended OpenDwarfs (EOD)
Benchmark Suite
• The EOD benchmarks are a set of diverse OpenCL codes satisfying each of the 13 Berkeley
Dwarfs:

◦ N-body methods

◦ Dense Linear Algebra

◦ Finite State Machines

◦ Structured Grids

◦ Graph Traversal

◦ and more...

• OpenCL codes representative of each dwarf typically induce similar memory access patterns.

17

Results

18

GEM: N-body Methods OpenDwarfs
Benchmark

19

Needleman-Wunsch: Dynamic
Programming OpenDwarfs Benchmark

20

CSR: Sparse Linear Algebra OpenDwarfs
Benchmark

21

Conclusions and Future Work
• Proposed two new metrics to AIWC framework.

• Parallel Spatial Locality is the first architecture independent metric of its kind
for parallel programs.
➢ Tested the metric against the Extended OpenDwarfs Benchmarking Suite.

• Improve AIWC to help HPC developers better understand (and optimise) their
complex codes.

• Extend current methodology to create metrics for:
➢ Different optimisation strategies (not only memory-based ones).

➢ Different target architectures – CPUs and FPGAs.

22

