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Introducing: Heterogenous Computing
• Shift towards incorporating diverse range of computer architectures: CPUs, GPUs, 
FPGAs, ASICs.

• OpenCL language designed for code to be executed on diverse hardware “targets”.
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Why Memory Access Behaviour Matters
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• Memory accesses are a major cause of bottlenecks on modern computer architectures.

• Spatial Locality for Caches: Programs that frequently access nearby memory addresses tend to 
have better performance.

CPU       L1 (~1 cycle)

Last Level (LL) Cache (~10 cycles)

RAM (~200 cycles)

Data Read/Write

…
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What patterns in the memory accesses performed by a program 
are good for performance on varying hardware targets?



Problem Statement

“Develop a method to help HPC developers understand how 
their code interacts with memory – independent of the 
target hardware platform.”
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Introducing: AIWC ('air-wik)
• Architecture Independent Workload Characterisation (AIWC) tool for OpenCL – Developed by  
Beau Johnston and Josh Milthorpe.

• Plugin for the Oclgrind simulator for OpenCL.
➢ Executes OpenCL kernels on abstract virtual OpenCL devices

➢ Follows OpenCL memory and execution model

• Architecture-Independent Oclgrind simulation allows for architecture-independent analysis of 
OpenCL code.
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Introducing: AIWC ('air-wik)
• Collect metrics that characterise parallel programs.

• Metrics collected are independent of the hardware target of an OpenCL kernel.

• Memory based metrics:
➢ Total Memory Footprint: How much memory access occurs. (Lower is better)

➢ Memory Address Entropy: Measure of spread of memory regions accessed. (Lower is better)
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A Test-Case Kernel for Optimisation 

__kernel void simpleMultiply(__global float *A,
__global float *B,
__global float *C, 
int N)

{
float acc = 0.0f;
for (int k = 0; k < N; ++k) {

acc += B[k * N + globalCol] 
* A[globalRow * N + k];

}
// Store the result
C[globalRow * N + globalCol] = acc;

}
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(NVIDIA Corporation. Cuda C best practices guide. 2019.)



Coalescing Accesses to Matrix A (coalescedA)
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Coalescing Accesses to Matrix B (coalescedAB)
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Efficient Local Memory Usage (coalescedABT)
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Performance Results
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Creating new AIWC Metrics!
• Observation: Accesses to “local” memory (or fast access on-chip memory) are good
➢ New Metric: Relative Local Memory Usage (RLMU). (Higher is better)

• Observation: Parallel accesses to nearby memory addresses are good
➢ New Metric: Parallel Spatial Locality (PSL).
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The Parallel Spatial Locality Metric
Formal Definition:
Calculate entropy (or spread) of memory addresses at each timestep.
Repeat entropy calculations at varying “skipped-bits”
Calculate the following:

𝑃𝑆𝐿𝑛−𝑏𝑖𝑡𝑠(𝑡) = 

𝛼∈𝐴𝑛(𝑡)

𝑝𝛼 log2(𝑝𝛼
−1) (1)

with 𝐴𝑛(𝑡) the set of addresses accessed at time 𝑡 accessed after skipping 𝑛
bits, 𝑝𝛼 the probability of a specific address.
Average this value across all timesteps of program execution to obtain 
𝑃𝑆𝐿𝑛−𝑏𝑖𝑡𝑠.
A higher number of threads in an OpenCL workgroup leads to higher 𝑃𝑆𝐿𝑛−𝑏𝑖𝑡𝑠
values. We normalise the 𝑃𝑆𝐿𝑛−𝑏𝑖𝑡𝑠 by dividing by log2(𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠−𝑝𝑒𝑟−𝑔𝑟𝑜𝑢𝑝) .

• Main takeaway: the steeper the drop in PSL as the number of bits skipped 
increases, the more localised the memory accesses are. 
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Preliminary Findings
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Findings
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Testing on Extended OpenDwarfs (EOD)
Benchmark Suite
• The EOD benchmarks are a set of diverse OpenCL codes satisfying each of the 13 Berkeley 
Dwarfs:

◦ N-body methods

◦ Dense Linear Algebra

◦ Finite State Machines

◦ Structured Grids

◦ Graph Traversal

◦ and more...

• OpenCL codes representative of each dwarf typically induce similar memory access patterns.
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Results
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GEM: N-body Methods OpenDwarfs
Benchmark
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Needleman-Wunsch: Dynamic 
Programming OpenDwarfs Benchmark
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CSR: Sparse Linear Algebra OpenDwarfs
Benchmark
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Conclusions and Future Work
• Proposed two new metrics to AIWC framework.

• Parallel Spatial Locality is the first architecture independent metric of its kind 
for parallel programs.
➢ Tested the metric against the Extended OpenDwarfs Benchmarking Suite.

• Improve AIWC to help HPC developers better understand (and optimise) their 
complex codes.

• Extend current methodology to create metrics for: 
➢ Different optimisation strategies (not only memory-based ones).

➢ Different target architectures – CPUs and FPGAs.
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