
Extending SYCL Through Extensions for Productivity and 
Performance

James Brodman, Michael Kinsner, Ben Ashbaugh, Jeff Hammond, Alexey Bader, John Pennycook, Jason Sewall, Roland Schulz

SYCLcon 2020



Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Outline

▪ Intro

▪ DPC++ Extensions

– Unified Shared Memory

– Unnamed Kernel Lambda

– In-order Queues

– Sub-groups

– Reductions

– Simplifications

▪ Summary

2

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
3

DPC++ Extends SYCL* 1.2.1

DPC++ = modern C++ and SYCL and Extensions

Enhance Productivity

▪ Simple things should be simple to express

▪ Reduce verbosity and programmer burden

Enhance Performance

▪ Give programmers control over program execution

▪ Enable hardware-specific features

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
4

Unified Shared Memory (USM)

SYCL 1.2.1 provides the Buffer abstraction for memory

▪ Very powerful, elegantly expresses data dependences

However…

▪ Replacing all pointers and arrays with buffers in a C++ program can be a 
burden to programmers

USM provides a pointer-based alternative in DPC++

▪ Simplifies porting to an accelerator

▪ Gives programmers the desired level of control

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
5

Allocation Types APIs

void* sycl::malloc_device(size_t size, …)
void* sycl::malloc_host(size_t size, …)
void* sycl::malloc_shared(size_t size, …)
T* sycl::malloc_shared<T>(size_t count, …)
…

sycl::free(void *ptr, …)

void queue::memcpy(void* dest,
const void* src, size_t count)

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/USM.adoc

What is USM?

Type Description

device Allocations in device memory

host Allocations in host memory 
accessible by the device

shared Allocations accessible by both 
host and device that may 
migrate between them

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
6

auto A = (int *) malloc(N * sizeof(int));
auto B = (int *) malloc(N * sizeof(int));
auto C = (int *) malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {
A[i] = i; B[i] = 2*i;

}

{
buffer<int, 1> Ab(A, range<1>{N});
buffer<int, 1> Bb(B, range<1>{N});
buffer<int, 1> Cb(C, range<1>{N});

q.submit([&] (handler& h) {
auto R = range<1>{N};
auto aA = Ab.get_access<access::mode::read>(h);
auto aB = Bb.get_access<access::mode::read>(h);
auto aC = Cb.get_access<access::mode::write>(h);
h.parallel_for(R, [=] (id<1> i) {

aC[i] = aA[i] + aB[i];
});

});
q.wait();

} // A,B,C updated

Buffer Example

Declare C++ Arrays

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
7

auto A = (int *) malloc(N * sizeof(int));
auto B = (int *) malloc(N * sizeof(int));
auto C = (int *) malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {
A[i] = i; B[i] = 2*i;

}

{
buffer<int, 1> Ab(A, range<1>{N});
buffer<int, 1> Bb(B, range<1>{N});
buffer<int, 1> Cb(C, range<1>{N});

q.submit([&] (handler& h) {
auto R = range<1>{N};
auto aA = Ab.get_access<access::mode::read>(h);
auto aB = Bb.get_access<access::mode::read>(h);
auto aC = Cb.get_access<access::mode::write>(h);
h.parallel_for(R, [=] (id<1> i) {

aC[i] = aA[i] + aB[i];
});

});
q.wait();

} // A,B,C updated

Declare C++ Arrays

Initialize C++ Arrays

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
8

auto A = (int *) malloc(N * sizeof(int));
auto B = (int *) malloc(N * sizeof(int));
auto C = (int *) malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {
A[i] = i; B[i] = 2*i;

}

{
buffer<int, 1> Ab(A, range<1>{N});
buffer<int, 1> Bb(B, range<1>{N});
buffer<int, 1> Cb(C, range<1>{N});

q.submit([&] (handler& h) {
auto R = range<1>{N};
auto aA = Ab.get_access<access::mode::read>(h);
auto aB = Bb.get_access<access::mode::read>(h);
auto aC = Cb.get_access<access::mode::write>(h);
h.parallel_for(R, [=] (id<1> i) {

aC[i] = aA[i] + aB[i];
});

});
q.wait();

} // A,B,C updated

Declare C++ Arrays

Declare Buffers

Initialize C++ Arrays

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
9

auto A = (int *) malloc(N * sizeof(int));
auto B = (int *) malloc(N * sizeof(int));
auto C = (int *) malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {
A[i] = i; B[i] = 2*i;

}

{
buffer<int, 1> Ab(A, range<1>{N});
buffer<int, 1> Bb(B, range<1>{N});
buffer<int, 1> Cb(C, range<1>{N});

q.submit([&] (handler& h) {
auto R = range<1>{N};
auto aA = Ab.get_access<access::mode::read>(h);
auto aB = Bb.get_access<access::mode::read>(h);
auto aC = Cb.get_access<access::mode::write>(h);
h.parallel_for(R, [=] (id<1> i) {

aC[i] = aA[i] + aB[i];
});

});
q.wait();

} // A,B,C updated

Declare C++ Arrays

Declare Buffers

Declare Accessors

Initialize C++ Arrays

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
10

auto A = (int *) malloc(N * sizeof(int));
auto B = (int *) malloc(N * sizeof(int));
auto C = (int *) malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {
A[i] = i; B[i] = 2*i;

}

{
buffer<int, 1> Ab(A, range<1>{N});
buffer<int, 1> Bb(B, range<1>{N});
buffer<int, 1> Cb(C, range<1>{N});

q.submit([&] (handler& h) {
auto R = range<1>{N};
auto aA = Ab.get_access<access::mode::read>(h);
auto aB = Bb.get_access<access::mode::read>(h);
auto aC = Cb.get_access<access::mode::write>(h);
h.parallel_for(R, [=] (id<1> i) {

aC[i] = aA[i] + aB[i];
});

});
q.wait();

} // A,B,C updated

Declare C++ Arrays

Declare Buffers

Declare Accessors

Use Accessors in Kernel

Initialize C++ Arrays

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
11

auto A = (int *) malloc(N * sizeof(int));
auto B = (int *) malloc(N * sizeof(int));
auto C = (int *) malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {
A[i] = i; B[i] = 2*i;

}

{
buffer<int, 1> Ab(A, range<1>{N});
buffer<int, 1> Bb(B, range<1>{N});
buffer<int, 1> Cb(C, range<1>{N});

q.submit([&] (handler& h) {
auto R = range<1>{N};
auto aA = Ab.get_access<access::mode::read>(h);
auto aB = Bb.get_access<access::mode::read>(h);
auto aC = Cb.get_access<access::mode::write>(h);
h.parallel_for(R, [=] (id<1> i) {

aC[i] = aA[i] + aB[i];
});

});
q.wait();

} // A,B,C updated

Declare C++ Arrays

Declare Buffers

Declare Accessors

Use Accessors in Kernel

C++ Arrays Updated

Initialize C++ Arrays

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
12

int *A = malloc_shared<int>(N, q);
int *B = malloc_shared<int>(N, q);
int *C = malloc_shared<int>(N, q);

for (int i = 0; i < N; i++) {
A[i] = i; B[i] = 2*i;

}

q.submit([&] (handler& h) {
auto R = range{N};
h.parallel_for(R, [=] (id<1> ID) {

C[ID] = A[ID] + B[ID];
});

});
q.wait();
// A,B,C updated and ready to use

USM Example

Declare USM Arrays

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
13

int *A = malloc_shared<int>(N, q);
int *B = malloc_shared<int>(N, q);
int *C = malloc_shared<int>(N, q);

for (int i = 0; i < N; i++) {
A[i] = i; B[i] = 2*i;

}

q.submit([&] (handler& h) {
auto R = range{N};
h.parallel_for(R, [=] (id<1> ID) {

C[ID] = A[ID] + B[ID];
});

});
q.wait();
// A,B,C updated and ready to use

Declare USM Arrays

Initialize USM Arrays

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
14

int *A = malloc_shared<int>(N, q);
int *B = malloc_shared<int>(N, q);
int *C = malloc_shared<int>(N, q);

for (int i = 0; i < N; i++) {
A[i] = i; B[i] = 2*i;

}

q.submit([&] (handler& h) {
auto R = range{N};
h.parallel_for(R, [=] (id<1> ID) {

C[ID] = A[ID] + B[ID];
});

});
q.wait();
// A,B,C updated and ready to use

Declare USM Arrays

Initialize USM Arrays

Read/Write USM Arrays

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
15

int *A = malloc_shared<int>(N, q);
int *B = malloc_shared<int>(N, q);
int *C = malloc_shared<int>(N, q);

for (int i = 0; i < N; i++) {
A[i] = i; B[i] = 2*i;

}

q.submit([&] (handler& h) {
auto R = range{N};
h.parallel_for(R, [=] (id<1> ID) {

C[ID] = A[ID] + B[ID];
});

});
q.wait();
// A,B,C updated and ready to use

Declare USM Arrays

Initialize USM Arrays

Read/Write USM Arrays

USM Arrays Updated

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
16

Explicit Scheduling

▪ Submitting a kernel returns an Event

▪ Wait on Events to order tasks

auto E = q.submit([&] (handler& h) {
auto R = range<1>{N};
h.parallel_for(R, [=] (id<1> ID) {
auto i = ID[0];
C[i] = A[i] + B[i];

});
});
E.wait();

DPC++ Graph Scheduling

▪ Build Task Graphs from Events

auto R = range<1>{N};

auto E = q.submit([&] (handler& h) {
h.parallel_for(R, [=] (id<1> ID) {…});

});

q.submit([&] (handler& h) {
h.depends_on(E);
h.parallel_for(R, [=] (id<1> ID) {…});

});

Task Scheduling with USM

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
17

Why Unified Shared Memory?

USM makes it easier to get applications running on an accelerator

▪ Easier integration into C++ apps

▪ Shared allocations handle data movement for the programmer

– Faster time to working program, fewer errors

Check out the IWOCL presentation from Michal Mrozek on USM in OpenCL:

▪ “Taking memory management to the next level – Unified Shared Memory in 
action”

▪ Learn how USM differs from OpenCL SVM

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
18

SYCL 1.2.1 requires all kernels to have 
a unique name:

▪ Functor class type

▪ Template typename for Lambdas

DPC++ removes this requirement for 
Lambdas

▪ Must use DPC++ compiler for both host 
and device code

▪ Enabled via compiler switch or dpcpp
executable

q.submit([&] (handler& h) {
auto R = range{N};

h.parallel_for<class VAdd>(
R, [=](id<1> ID) {

C[ID] = A[ID] + B[iD];
});

});

Unnamed Kernel Lambda

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
19

SYCL 1.2.1 requires all kernels to have 
a unique name:

▪ Functor class type

▪ Template typename for Lambdas

DPC++ removes this requirement for 
Lambdas

▪ Must use DPC++ compiler for both host 
and device code

▪ Enabled via compiler switch or dpcpp
executable

q.submit([&] (handler& h) {
auto R = range{N};

h.parallel_for(
R, [=](id<1> ID) {

C[ID] = A[ID] + B[ID];
});

});

Unnamed Kernel Lambda

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
20

DPC++ Queues are out-of-order

▪ Allows expressing complex DAGs

Linear task chains are common

▪ DAGs are overkill here and add verbosity

Simple things should be simple to 
express

▪ In-order semantics express the linear 
task pattern easily

// Without in-order Queues
queue q;
auto R = range{N};

auto E = q.submit([&] (handler& h) {
h.parallel_for(R, [=] (id<1> ID) {…});

});

auto F = q.submit([&] (handler& h) {
h.depends_on(E);
h.parallel_for(R, [=] (id<1> ID) {…});

});

q.submit([&] (handler& h) {
h.depends_on(F);
h.parallel_for(R, [=] (id<1> ID) {…});

});

In-order Queue

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
21

DPC++ Queues are out-of-order

▪ Allows expressing complex DAGs

Linear task chains are common

▪ DAGs are overkill here and add verbosity

Simple things should be simple to 
express

▪ In-order semantics express the linear 
task pattern easily

// With in-order Queues
queue q{property::queue::in_order()};
auto R = range{N};

q.submit([&] (handler& h) {
h.parallel_for(R, [=] (id<1> ID) {…});

});

q.submit([&] (handler& h) {
h.parallel_for(R, [=] (id<1> ID) {…});

});

q.submit([&] (handler& h) {
h.parallel_for(R, [=] (id<1> ID) {…});

});

In-order Queue

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Sub-groups in DPC++

Implementation-defined subset of work-items in a work-group

Work-items in a sub-group execute “together”

▪ e.g. SIMD instructions, NVIDIA* warps, AMD* wavefronts, fibers/coroutines

Global work size

Work-group

Work-item

Sub-group

22

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

q.parallel_for(R, [=](nd_item<1> it)
[[intel::reqd_sub_group_size(8)]] /* Request specific sub-group size */ {

// Get handle to the sub-group this item belongs to
sub_group sg = it.get_sub_group();
...
// Optimized code when all work-items in the sub-group take the same branch
bool condition = ...;
if (all_of(sg, condition)) {
...
int sum = reduce(sg, x, plus<>()); // Accumulate partial results from all work-items
...

}
// Otherwise, fall back to less efficient path
else {
...

}
});

Example: Sub-groups in DPC++

23

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Reductions in DPC++

Reduction kernels combining multiple values to produce a single output appear frequently across applications from multiple 
domains

Reductions have simple semantics...

▪ The input values can be combined in any order

▪ Only the final result is meaningful

... but implementing high-performance reductions is non-trivial:

▪ How many input values are there?

▪ How much parallelism is there?

▪ What features does the hardware have? (e.g. atomic instructions, scratchpads)

DPC++ shifts implementation burden from developers to compiler/runtime

24

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

// Compute dot-product by reducing all values using standard plus functor
q.parallel_for(R, reduction(sum, 0, plus<float>()), [=](nd_item<1> it, auto& partial_sum) {
int i = it.get_global_id(0);
partial_sum += (a[i] * b[i]);

}).wait();

Example: Reductions in DPC++

1. A reduction operation is described by:
• A reduction variable (e.g. sum)
• An (optional) identity variable (e.g. 0)
• A combination operation (e.g. plus<float>())

2. The kernel lambda accepts a reference to a reducer per work-item
• Restricts interface to prevent updates incompatible with the combination operation

3. Implementation combines reducers and updates reduction variable before kernel 
completes

25

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.

Language and API Simplifications

Simple things should be simple to express!

▪ Class Template Argument Deduction (CTAD)

– buffer<int, 2> b(ptr, range<2>(5, 5)) →
buffer b(ptr, range(5, 5)), etc.

▪ Queue shortcuts

– Useful when combined with USM

– q.submit([&] (handler& h) { h.parallel_for(…); } → 
q.parallel_for(…);

▪ More planned

26

http://software.intel.com/en-us/articles/optimization-notice


Copyright ©, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Refer to software.intel.com/articles/optimization-notice for more information regarding performance & optimization choices in Intel software products.
27

Summary

DPC++ builds upon the strong foundation of SYCL

▪ Builds upon SYCL 1.2.1 with new features that:

– Make simple things simple to express

– Provide access to hardware-specific features

▪ We hope many of these extensions appear in a future version of SYCL

New features being developed through a community project

▪ https://github.com/intel/llvm

▪ Specifications for the extensions found there or at https://www.oneapi.com/

http://software.intel.com/en-us/articles/optimization-notice
https://github.com/intel/llvm
https://www.oneapi.com/



