IWOCL 2024 2024-04-11

WELCOME FROM ARGONNE NATIONAL LABORATORY

BRICE VIDEAU Computer Scientist

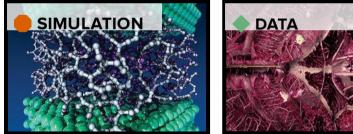
Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

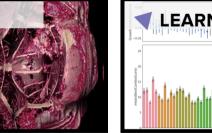
Argonne Leadership Computing Facility

- Aerial view of Lemont campus
- Advanced
 Photon Source
 (bottom right)
- Chicago skyline (in the distance)

ARGONNE NATIONAL LABORATORY Tackling Societal Challenges

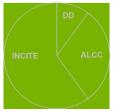
- About 4000 employees, 2000 Researchers
- 6 user facilities serving about 8000 researchers around the world
- Tackling societal challenges
 - Environmental research
 - Energy research
 - Biology and medicine
 - Fundamental physics
 - Al for Science
 - Microelectronics


ARGONNE LEADERSHIP COMPUTING FACILITY



The Argonne Leadership Computing Facility provides world-class computing resources to the scientific community.

- Users pursue scientific challenges
- In-house experts to help maximize results
- Resources fully dedicated to open science



Architecture supports three types of computing

- Large-scale Simulation (PDEs, traditional HPC)
- Data Intensive Applications (scalable science pipelines)
- Deep Learning and Emerging Science AI (training and inferencing)

ALCF offers different pipelines for different applications

AURORA

Intel GPU Intel® Data Center GPU Max Series

Intel Xeon Processor 4th Gen Intel XEON Max Series CPU with High Bandwidth Memory

Platform HPE Cray-Ex

Peak FP Performance **≧ 2 Exaflops DP**

Memory 10.9PB of DDR @ 5.95 PB/s 1.36PB of CPU HBM @ 30.5 PB/s 8.16PB of GPU HBM @ 208.9 PB/s

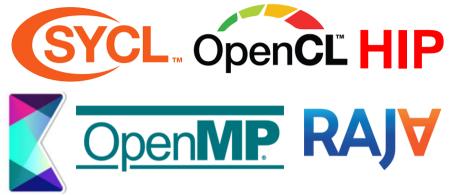
Network 2.12 PB/s Peak Injection BW 0.69 PB/s Peak Bisection BW

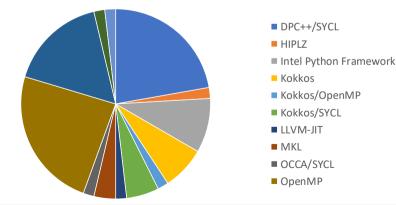
Storage 230PB DAOS Capacity 31 TB/s DAOS Bandwidth

Racks - 166 Nodes - 10,624 CPUs - 21,248 GPUs - 63,744

Interconnect

HPE Slingshot 11 Dragonfly topology with adaptive routing Network Switch:


25.6 Tb/s per switch (64 200 Gb/s ports) Links with 25 GB/s per direction


AVAILABLE AURORA PROGRAMMING MODELS

- Aurora applications may use:
 - DPC++/SYCL
 - OpenMP
 - Kokkos
 - Raja
 - OpenCL
- Experimental
 - HIP
- Not available on Aurora:
 - CUDA
 - OpenACC

NERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Early Science Application Programming Model Distribution

RELIANCE ON OPEN STANDARDS And Khronos' in Particular

- Most of applications running on Aurora are using Open Standards
- Around half leverage SYCL either directly or through a higher level programming model
 - Kokkos, OCCA, RAJA

RTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

- 100% of applications that use the GPU do so through SPIR-V
- OpenCL available directly or as an alternative backend for SYCL, OpenMP, or HIP
- ALCF is a Khronos member and participates in the SYCL and OpenCL working groups (and C++, OpenMP, MPI, ...)

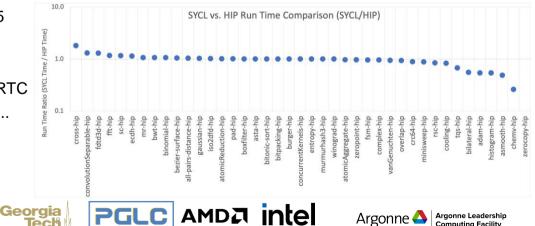
HIP ON AURORA Building HIP on SPIR-V and OpenCL (or Intel Level Zero)

Overview

- Intel GPUs lack native support for the CUDA or HIP programming models
- A large fraction of GPU enabled HPC applications are written using CUDA or HIP
- Working to bring AMD's HIP and Nvidia CUDA to Aurora

Progress

- Release 1.1 chipStar
 - Provides HIP support on LLVM 17, 16, and 15
 - https://github.com/CHIP-SPV/chipStar
- Supported applications: CP2K, GAMESS, libCEED
- Supported HIP libraries: HipBLAS, hipSOLVER, hipRTC
- Upcoming support for ExaBiome, hipFFT, and more...
- Experimental CUDA support
- Currently using extensions we are working on upstreaming into Khronos standards



ChipStar Workflow

HecBench: HIP vs SYCL version of benchmarks

Modified HIPCC

HIP Level Zero or OpenCL

FINAL THOUGHTS

Importance of Open Standards ... and their Adoption

- Khronos standards, and the LLVM ecosystem, are
 - The basis of Aurora's software toolchain
 - Performant compilers and runtimes
 - Benefit broader community
 - Enabling development of layered implementations
- Wishlist
 - Make SYCL, OpenCL, and Vulkan "compatible"
 - Unify Vulkan and OpenCL compute and memory models, SPIR-V
 - Layered SYCL 2020 and OpenCL over Vulkan
 - Broader adoption of SYCL and OpenCL

BROADER OPENCL SUPPORT FOR LINUX DESKTOPS

The MESA Strategy

Keynote

Rusticl: Compute for the Linux Desktop?

Karol Herbst

Linux GPU Driver Software Engineer at Red Hat

Argonne Leadership Computing Facility