
© The Khronos® Group Inc. 2024 - Page 1This work is licensed under a Creative Commons Attribution 4.0 International License

SYCL SC State of the Union
IWOCL’24

April 10, 2024
Victor Perez & Hugh Delaney

On behalf of the SYCL SC WG

© The Khronos® Group Inc. 2024 - Page 2This work is licensed under a Creative Commons Attribution 4.0 International License

Agenda

• Background

• Highlights of last 12 months

• Ecosystem

© The Khronos® Group Inc. 2024 - Page 3This work is licensed under a Creative Commons Attribution 4.0 International License

Khronos Safety Critical Standards Evolution

OpenGL ES 1.0 - 2003
Fixed function graphics

OpenGL ES 2.0 - 2007
Programmable Shaders

OpenGL SC 1.0 - 2005
Fixed function graphics
safety-critical subset

OpenGL SC 2.0 - 2016
Programmable Shaders
Safety-critical subset

Vulkan 1.2 - 2020
Explicit Graphics and Compute

and Display

Vulkan SC 1.0 - 2022
Explicit Graphics, Compute and

Display safety-critical subset

SYCL 2020
C++-based heterogeneous

parallel programming

March 2023SYCL SC Working Group created to
develop C++-based heterogeneous parallel compute programming

framework for safety-critical systems

Khronos has 20 years experience in
standards for safety-critical markets
Leveraging proven mainstream standards

with shipping implementations and
developer tooling and familiarity

A choice of abstraction levels to suit
different markets and developer needs

OpenVX SC Extension – 2017
Graph-based vision and

inferencing

OpenVX 1.3 – 2019
SC Extension integrated into
core OpenVX specification

© The Khronos® Group Inc. 2024 - Page 4This work is licensed under a Creative Commons Attribution 4.0 International License

Verena Beckham
VP of Safety Engineering

at
Chair

Spec Editor

Outreach Officer

Leonidas Kosmidis
Senior Researcher

at

Andriy Byzhynar
Software Architect

at

SYCL SC Working Group Officers

© The Khronos® Group Inc. 2024 - Page 5This work is licensed under a Creative Commons Attribution 4.0 International License

SYCL SC Working Group Regular Members

© The Khronos® Group Inc. 2024 - Page 6This work is licensed under a Creative Commons Attribution 4.0 International License

What is “Safety-Critical”?

• A system is Safety-Critical if its failure could result in harm/death of people

• SC industries: automotive, avionics, medical, rail, atomic

• Often certified according to standards
- Automotive: ISO 26262
- Avionics: DO-178C
- Medical: IEC 62304

• Standards define safety levels: ASIL A-D / DAL A-E / Class A-C

• Require Functional Safety
- Absence of unreasonable risk caused by malfunction
=> Risk has been analyzed, mitigated to a reasonable level, proven
- A system property
- More than just language safety

© The Khronos® Group Inc. 2024 - Page 7This work is licensed under a Creative Commons Attribution 4.0 International License

SYCL SC

• Why?
- SC industries increasingly require acceleration

of software, due to
- Rising popularity of AI algorithms
- Proliferation of heterogeneous computing
- Increasing demand for performance

• What?
- Based on SYCL 2020
- Modifications to ease safety-certification

- Of the implementation of the standard
- Of the SYCL application

Deterministic
Predictable execution time

Predictable results

Robust
Comprehensive error handling

Removal of ambiguity
Clarification of undefined behaviour

Simplified
Runtime can be more

easily certified

New Khronos Working Group
Created March ‘23

© The Khronos® Group Inc. 2024 - Page 8This work is licensed under a Creative Commons Attribution 4.0 International License

What SYCL SC is Not
SYCL SC will not

• Tell you how to implement a “safe” application
• Guarantee a safe application
• Tell you how to implement a “safe” SYCL SC runtime
• Guarantee a safe runtime
• Tell you how to apply any industry process or standard
• Be certified (as a standard)
• Make your hardware safe

SYCL SC will be compatible with you doing the above, but cannot do it for you.
SYCL SC assumes that you are using safe HW, e.g. incorporating redundancy, EDC/ECC,
watchdogs.

© The Khronos® Group Inc. 2024 - Page 9This work is licensed under a Creative Commons Attribution 4.0 International License

Agenda

• Background

• Highlights of last 12 months

• Ecosystem

© The Khronos® Group Inc. 2024 - Page 10This work is licensed under a Creative Commons Attribution 4.0 International License

Online Compilation
● A SYCL implementation can do one or both of:

○ Online compilation of kernels at run-time
○ Offline compilation of kernels

● Some SYCL features rely on online compilation, e.g.
○ Specialization constants
○ Parts of kernel_bundle

● All deployed SW needs to be safety certified
● Safety certification is expensive

○ Follow strict processes
○ Write code in a careful way (e.g. follow guidelines)
○ Perform exhaustive testing
○ …

● Don’t want to certify a compiler!
● Offline compilation allows verification of binary during

development phase

Implies: Focus on offline compilation only in SYCL SC.

© The Khronos® Group Inc. 2024 - Page 11This work is licensed under a Creative Commons Attribution 4.0 International License

Development vs. Deployment

Development Deployment

Traditional SW development

Safety critical SW development

Development Certification Deployment

© The Khronos® Group Inc. 2024 - Page 12This work is licensed under a Creative Commons Attribution 4.0 International License

Development vs. Deployment Features
 Examples:

All deployed code must be safety certified

💰 Certification is expensive

Remove development features ➡ Lower certification costs

Development features can still be implemented outside of the spec!
Expect:

● Debug & Release builds of SYCL SC runtime OR
● Use SYCL implementation for development, move to SYCL SC for deployment

Implies: Make it easy for a SYCL SC application to run on a SYCL runtime

Development Feature Deployment Feature

profiling support queues

stream class buffers/accessors

© The Khronos® Group Inc. 2024 - Page 13This work is licensed under a Creative Commons Attribution 4.0 International License

Additional Discussion Items
The WG has also started discussing

Avoiding Dynamic Memory on Host
• Dynamic memory in C++ is not deterministic
• All memory allocation typically static or up-front in SC applications
• Finding a balance between determinism and algorithm flexibility

Deterministic Error Management
• SYCL uses C++ exception
• Timing of exception handling not deterministic in common compilers
• Some custom compilers support this
• Challenge: Keep the difference to Base SYCL small

© The Khronos® Group Inc. 2024 - Page 14This work is licensed under a Creative Commons Attribution 4.0 International License

Outreach

In addition to member presentations

© The Khronos® Group Inc. 2024 - Page 15This work is licensed under a Creative Commons Attribution 4.0 International License

Agenda

• Background

• Highlights of last 12 months

• Ecosystem

www.uxlfoundation.org

Unified Acceleration Foundation (UXL)

▪ Build a multi-architecture multi-vendor software ecosystem for all
accelerators

▪ Unify the heterogeneous compute ecosystem around open standards
▪ Build on and expand open source projects for accelerated computing

Mission

Data
Parallel C++ Library

oneDPL
Deep Neural

Network Library

oneDNN
Collective

Communications
Library

oneCCL

Hardware Interface

Level
Zero

Data
Analytics Library

oneDAL
Threading

Building Blocks

oneTBB
Math

Kernel Library

oneMKL
Specification

http://www.uxlfoundation.org/

www.uxlfoundation.org

New Safety Critical SIG

Potential activities:

● Analyse/Suggest changes to make projects easier to safety certify;
● Communicate SC-specific requirements;
● Discuss certification/integration strategies;
● Collaborate on SYCL SC porting & safety artefacts.

Open to anyone
To join: https://lists.uxlfoundation.org/g/Safety-Critical-SIG

Aim:

http://www.uxlfoundation.org/
https://lists.uxlfoundation.org/g/Safety-Critical-SIG

© The Khronos® Group Inc. 2024 - Page 18This work is licensed under a Creative Commons Attribution 4.0 International License

Khronos AUTOSAR Liaison: SYCL Demonstrator

18

Thank you to AUTOSAR and Intellias

The main aim: creation of generic API in
AUTOSAR, which allows to utilize hardware
acceleration for computation efficiency
improvement. SYCL is the best candidate to be
used under the hood. Moreover, SYCL SC
will potentially add required safety
compatibility.

© The Khronos® Group Inc. 2024 - Page 19This work is licensed under a Creative Commons Attribution 4.0 International License

Get Involved!
Excited about getting your hands on this?

Are you piqued by the challenge?

Get in contact!
Member of Khronos? Join the Working Group!
Not a member? Look out for Advisory Panels!

Visit www.khronos.org/syclsc
Contact sycl_sc-chair@lists.khronos.org
or verena@codeplay.com

https://www.khronos.org/syclsc

