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Khronos Safety Critical Standards Evolution

OpenGL ES 1.0 - 2003
Fixed function graphics

OpenGL ES 2.0 - 2007
Programmable Shaders

OpenGL SC 1.0 - 2005
Fixed function graphics 
safety-critical subset

OpenGL SC 2.0 - 2016
Programmable Shaders
Safety-critical subset

Vulkan 1.2 - 2020
Explicit Graphics and Compute 

and Display

Vulkan SC 1.0 - 2022
Explicit Graphics, Compute and 

Display safety-critical subset

SYCL 2020
C++-based heterogeneous 

parallel programming

March 2023SYCL SC Working Group created to 
develop C++-based heterogeneous parallel compute programming 

framework for safety-critical systems

Khronos has 20 years experience in 
standards for safety-critical markets 
Leveraging proven mainstream standards 

with shipping implementations and 
developer tooling and familiarity

A choice of abstraction levels to suit 
different markets and developer needs

OpenVX SC Extension – 2017
Graph-based vision and 

inferencing 

OpenVX 1.3 – 2019
SC Extension integrated into 
core OpenVX specification
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Verena Beckham
VP of Safety Engineering

at
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Spec Editor
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Leonidas Kosmidis
Senior Researcher

at

Andriy Byzhynar
Software Architect

at
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SYCL SC Working Group Regular Members
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What is “Safety-Critical”?

• A system is Safety-Critical if its failure could result in harm/death of people

• SC industries: automotive, avionics, medical, rail, atomic

• Often certified according to standards
- Automotive: ISO 26262
- Avionics: DO-178C
- Medical: IEC 62304

• Standards define safety levels: ASIL A-D / DAL A-E / Class A-C

• Require Functional Safety
- Absence of unreasonable risk caused by malfunction
=> Risk has been analyzed, mitigated to a reasonable level, proven
- A system property 
- More than just language safety
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SYCL SC

• Why?
- SC industries increasingly require acceleration 

of software, due to
- Rising popularity of AI algorithms
- Proliferation of heterogeneous computing
- Increasing demand for performance

• What?
- Based on SYCL 2020
- Modifications to ease safety-certification

- Of the implementation of the standard
- Of the SYCL application

Deterministic
Predictable execution time

Predictable results

Robust
Comprehensive error handling

Removal of ambiguity
Clarification of undefined behaviour

Simplified
Runtime can be more 

easily certified

New Khronos Working Group
Created March ‘23
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What SYCL SC is Not
SYCL SC will not

• Tell you how to implement a “safe” application
• Guarantee a safe application
• Tell you how to implement a “safe” SYCL SC runtime
• Guarantee a safe runtime
• Tell you how to apply any industry process or standard
• Be certified (as a standard)
• Make your hardware safe

SYCL SC will be compatible with you doing the above, but cannot do it for you.
SYCL SC assumes that you are using safe HW, e.g. incorporating redundancy, EDC/ECC, 
watchdogs.
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Online Compilation
● A SYCL implementation can do one or both of:

○ Online compilation of kernels at run-time
○ Offline compilation of kernels 

● Some SYCL features rely on online compilation, e.g.
○ Specialization constants
○ Parts of kernel_bundle

● All deployed SW needs to be safety certified
● Safety certification is expensive

○ Follow strict processes
○ Write code in a careful way (e.g. follow guidelines)
○ Perform exhaustive testing
○ …

● Don’t want to certify a compiler!
● Offline compilation allows verification of binary during 

development phase

Implies: Focus on offline compilation only in SYCL SC.
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Development vs. Deployment

Development Deployment

Traditional SW development 

Safety critical SW development 

Development Certification Deployment
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Development vs. Deployment Features
    Examples:

All deployed code must be safety certified

💰  Certification is expensive

Remove development features  ➡  Lower certification costs

Development features can still be implemented outside of the spec!
Expect:

● Debug & Release builds of SYCL SC runtime OR
● Use SYCL implementation for development, move to SYCL SC for deployment

Implies: Make it easy for a SYCL SC application to run on a SYCL runtime

Development Feature Deployment Feature

profiling support queues

stream class buffers/accessors
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Additional Discussion Items
The WG has also started discussing

Avoiding Dynamic Memory on Host
• Dynamic memory in C++ is not deterministic
• All memory allocation typically static or up-front in SC applications
• Finding a balance between determinism and algorithm flexibility

Deterministic Error Management
• SYCL uses C++ exception
• Timing of exception handling not deterministic in common compilers
• Some custom compilers support this
• Challenge: Keep the difference to Base SYCL small
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Outreach

In addition to member presentations
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www.uxlfoundation.org

Unified Acceleration Foundation (UXL)

▪ Build a multi-architecture multi-vendor software ecosystem for all 
accelerators

▪ Unify the heterogeneous compute ecosystem around open standards
▪ Build on and expand open source projects for accelerated computing

Mission

Data
Parallel C++ Library

oneDPL
Deep Neural

Network Library

oneDNN
Collective

Communications 
Library

oneCCL

Hardware Interface

Level 
Zero

Data
Analytics Library

oneDAL
Threading

Building Blocks 

oneTBB
Math

Kernel Library

oneMKL
Specification

http://www.uxlfoundation.org/


www.uxlfoundation.org

New Safety Critical SIG

Potential activities:

● Analyse/Suggest changes to make projects easier to safety certify;
● Communicate SC-specific requirements;
● Discuss certification/integration strategies;
● Collaborate on SYCL SC porting & safety artefacts.

Open to anyone
To join: https://lists.uxlfoundation.org/g/Safety-Critical-SIG

Aim:

http://www.uxlfoundation.org/
https://lists.uxlfoundation.org/g/Safety-Critical-SIG
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Khronos AUTOSAR Liaison: SYCL Demonstrator

18

Thank you to AUTOSAR and Intellias

The main aim: creation of generic API in 
AUTOSAR, which allows to utilize hardware 
acceleration for computation efficiency 
improvement. SYCL is the best candidate to be 
used under the hood. Moreover, SYCL SC 
will potentially add required safety 
compatibility.
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Get Involved!
Excited about getting your hands on this?

Are you piqued by the challenge?

Get in contact!
Member of Khronos? Join the Working Group!
Not a member? Look out for Advisory Panels!

Visit      www.khronos.org/syclsc 
Contact sycl_sc-chair@lists.khronos.org 
or          verena@codeplay.com

https://www.khronos.org/syclsc

