
Dan Petre, Adam Lake, Allen Hux, Michal Mrozek

Presenter: Michal Mrozek
Permission to make digital or hard copies of part or all of this work for 

personal or classroom use is granted without fee provided that copies are not 

made or distributed for profit or commercial advantage and that copies bear 

this notice and the full citation on the first page. Copyrights for third-party 

components of this work must be honored. For all other uses, contact the 

Owner/Author. 

Copyright is held by the owner/author(s).

IWOCL '16, April 19-21, 2016, Vienna, Austria

ACM 978-1-4503-4338-1/16/04.

http://dx.doi.org/10.1145/2909437.2909451



Copyright ©  2016, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Notices and Disclaimers
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT
OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN
ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS
PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and  MobileMark, are measured using specific computer 
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your 
contemplated purchases, including the performance of that product when combined with other products.

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

All products, platforms, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice. All dates specified are target dates, are provided for planning purposes only and 
are subject to change.

This document contains information on products in the design phase of development. Do not finalize a design with this information. Revised information will be published when the product is available. Verify with your local 
sales office that you have the latest datasheet before finalizing a design.

Code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release.  Customers, licensees and other third parties are not authorized by Intel to use 
code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. 

Other names and brands may be claimed as the property of others.

Copyright © 2015-2016, Intel Corporation. All rights reserved.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

http://www.intel.com/design/literature.htm


Copyright ©  2016, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
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• Optimizations

• Results

• Conclusion and future work
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What is Fast Fourier Transform (FFT)?

4

DTFT

DFT

FFT

• Discrete-Time Fourier Transform 

(DTFT)

• Infinite series, can’t be computed

• Discrete Fourier Transform (DFT)

• A sampling of the DTFT

• FFT

• A fast way to compute DFT

1 𝑡 = 𝑛 × 𝑇, 𝑇 = quanta of time

𝑋𝑘 =  

𝑛=0
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Cooley-Tukey radix 2 decomposition
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What is Fast Fourier Transform (FFT)?

5

DTFT2

FFT

1 Here the signal is actually complex, the chart shows magnitude.
2 Not really a DTFT, just an approximation… DTFT can’t be computed.

• Discrete-Time Fourier Transform 

(DTFT)

• Infinite series, can’t be computed

• Discrete Fourier Transform (DFT)

• A sampling of the DTFT

• Fast Fourier Transform

• A fast way to compute DFT

signal1
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Typical Ways to Compute Fast Fourier Transform 
(FFT)

6

Cooley-Tukey
 Recursively split the FFT into smaller equal sizes

Split-Radix
 Radix 4:2:2

Stockham
 Eliminates the need for rearranging the inputs/outputs that is specific to Cooley-Tukey

Prime-factor
 Decompose into relatively prime numbers

Bluestein (Chirp-Z)
 For arbitrary sizes, uses Cooley-Tukey and convolution theorem

many others…
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Main Differences versus Other Implementations 

• No shared local memory, no 
barriers

• Maximize device occupancy

• Reduced code complexity

• Column major in/out

• Intended for progression to 2D Fast 
Fourier Transform (FFT)

• Maximizes memory bandwidth (GB/s)

• Cache-friendly

• FFT decomposed into smaller FFTs

• Called here “base FFTs”

• Maximize register use

• Reduced code complexity

• Multi-kernel

• Each base FFT as a separate kernel

• Code generation for

• Any local/global size configuration

• Any register size/SIMD size

7
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genFFT Code Generator and Execution Flow

• Decompose the Fast Fourier Transform 
(FFT) into factors power of two

• Base FFTs must maximize register use

• Minimize the difference of the last two 
factors – best performance

• Generate each base FFT

• Local twiddle factor lookup table (LUT) in 
registers

• Generate intermediary twiddle factors

• LUT in global memory

• Generate bit rotations

• In order to unscramble the data at the end

8

𝑁 =  𝑞=0
𝑄
𝑁𝑞

Read from
Global Memory

q=Q-1

Done

Nq Base FFT

Intermediary
Twiddle Factors

Write to
Global Memory

Out-of-place
Bit Rotations
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Base Fast Fourier Transform (FFT) Butterflies

• Cooley-Tukey radix 2 butterflies

• 8-Point DIT FFT on the right

• Decimation-In-Time

• Pseudo-code

1. Read signal

2. Bit reversal 

3. Perform the butterflies

• Apply twiddle factors

4. Write spectrum
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Base Fast Fourier Transform (FFT) Bit Reversal

• Each base FFT performs its own bit reversal

• No global bit reversal at the beginning

• A distributed bit reversal strategy

• Advantages

• The preprocessor eliminates bit reversal math at 
compile time

• The input is read directly into the correct 
registers

• Disadvantages

• This still requires bit rotations at the end of a 
multi-kernel FFT pipeline1

1 It can be argued that the bit rotations exhibit a more regular memory access pattern than a 
global bit reversal.
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Base Fast Fourier Transform (FFT) Bit Reversal

• Each base FFT performs its own bit reversal

• No global bit reversal at the beginning

• A distributed bit reversal strategy

• Advantages

• The preprocessor eliminates bit reversal math at 
compile time

• The input is read directly into the correct 
registers

• Disadvantages

• This still requires bit rotations at the end of a 
multi-kernel FFT pipeline1

1 It can be argued that the bit rotations exhibit a more regular memory access pattern than a 
global bit reversal.
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Multi-Kernel Fast Fourier Transform (FFT) 
Implementation
• Cooley-Tukey decomposition into 

factors power of 2

• Each factor treated as a radix-2 Cooley-
Tukey FFT with a different stride

• Each FFT as an independent kernel—
base FFT

• Base FFTs make efficient use of registers

• Each base FFT performs its own bit 
reversal on inputs

• Intermediary twiddle factors

• Bit rotations required at the end

FFT 8 stride 1

F
F

T
 8

 s
tr

id
e

 8

𝑁 = 64 = 8 × 8

Intermediary Twiddle Factors

FFT 8 
stride 8

FFT 8 
stride 1

Bit Rotations

𝐹𝐹𝑇𝑁 = 𝐹𝐹𝑇𝑁1 𝑊𝑁
𝑛1𝑘2𝐹𝐹𝑇𝑁2
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Multi-Kernel Fast Fourier Transform (FFT) 
implementation
• Cooley-Tukey decomposition into 

factors power of 2

• Each factor treated as a radix-2 Cooley-
Tukey FFT with a different stride

• Each FFT as an independent kernel—
base FFT

• Base FFTs make efficient use of registers

• Each base FFT performs its own bit 
reversal on inputs

• Intermediary twiddle factors

• Bit rotations required at the end
13
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Base FFT Twiddle Factors Lookup Table

14

• Storage requirements reduced from N/2 cl_float2 values to N/4+1 cl_float 
values

• Private array lookup table small enough to fit into registers

𝑊𝑁
𝑘 = 𝑒−𝑗

2𝜋
𝑁 𝑘 = cos  −2𝜋𝑘 𝑁 + 𝑗 sin  −2𝜋𝑘 𝑁
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Base FFT Twiddle Factors Lookup Table
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• Storage requirements reduced from N/2 cl_float2 values to N/4+1 cl_float 
values

• Private array lookup table small enough to fit into registers

𝑊𝑁
𝑘 = 𝑒−𝑗

2𝜋
𝑁 𝑘 = cos  −2𝜋𝑘 𝑁 + 𝑗 sin  −2𝜋𝑘 𝑁
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Base FFT Twiddle Factors Lookup Table
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• Storage requirements reduced from N/2 cl_float2 values to N/4+1 cl_float 
values

• Private array lookup table small enough to fit into registers

𝑊𝑁
𝑘 = 𝑒−𝑗

2𝜋
𝑁 𝑘 = cos  −2𝜋𝑘 𝑁 + 𝑗 sin  −2𝜋𝑘 𝑁
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Base FFT Twiddle Factors Lookup Table
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• Storage requirements reduced from N/2 cl_float2 values to N/4+1 cl_float 
values

• Private array lookup table small enough to fit into registers

𝑊𝑁
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Base FFT Twiddle Factors Lookup Table
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• Storage requirements reduced from N/2 cl_float2 values to N/4+1 cl_float 
values

• Private array lookup table small enough to fit into registers

𝑊𝑁
𝑘 = 𝑒−𝑗

2𝜋
𝑁 𝑘 = cos  −2𝜋𝑘 𝑁 + 𝑗 sin  −2𝜋𝑘 𝑁
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Base FFT Twiddle Factors Lookup Table

19

• Storage requirements reduced from N/2 cl_float2 values to N/4+1 cl_float 
values

• Private array lookup table small enough to fit into registers

𝑊𝑁
𝑘 = 𝑒−𝑗

2𝜋
𝑁 𝑘 = cos  −2𝜋𝑘 𝑁 + 𝑗 sin  −2𝜋𝑘 𝑁



Copyright ©  2016, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Base FFT Twiddle Factors Lookup Table

20

cos(i) sin(i)

0 1.0 0.0

1 0.98079 -0.19509

2 0.92388 -0.38268

3 0.83147 -0.55557

4 0.70711 -0.70711

5 0.55557 -0.83147

6 0.38268 -0.92388

7 0.19509 -0.98079

8 0.0 -1.0

9 -0.19509 -0.98079

10 -0.38268 -0.92388

11 -0.55557 -0.83147

12 -0.70711 -0.70711

13 -0.83147 -0.55557

14 -0.92388 -0.38268

15 -0.98079 -0.19509

16 -1.0 0.0

constant float W[9] =
{

+0.0f,
+0.19509f,
+0.38268f,
+0.55557f,
+0.70711f,
+0.83147f,
+0.92388f,
+0.98078f,

+1.0f,
};

cos(k) = +W(FFT_SIZE/4-FFT_SIZE/crtFFT * k);

sin(k) = -W(FFT_SIZE/crtFFT * k);

cos(k) = -W(FFT_SIZE/crtFFT * k);
sin(k) = -W(FFT_SIZE/4-FFT_SIZE/crtFFT * k);
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Intermediary Twiddle Factors Lookup Table

• Intermediary twiddle factors:

• Different than the base FFT twiddle factors

• Total of N cl_float2, quite large

• We reduced it to N/4+1 cl_float values (8x)

• At the cost of some pretty complicated 
indexing math

• Can be further reduced to half of that

• At the cost of extra math (sqrt) and accuracy

• >10 percent performance loss

• In the end: global array of N cl_float2 
kernel argument

21

𝑁 = 64 = 8 × 8

Intermediary Twiddle Factors

FFT 8 
stride 8

FFT 8 
stride 1

n1

n2

𝑊𝑁
𝑛1𝑛2 = 𝑒−𝑗

2𝜋
𝑁
𝑛1𝑛2
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Efficient Use of the Execution Unit Registers

• 7 hardware threads

• 128 registers per hardware thread

• 32 bytes per register

• 512 bytes per work item

• In SIMD 8 mode

• Nr = 32, max FFT size that fits in 
registers

• Up to 64 cl_float2 per work item

• leave room for other program 
variables

22

[Junkins 2014-2015]
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Efficient Use of Cache and Memory Bandwidth

• Goals

• Reduce number of cache lines touched

• Reduce the number of memory address 
requests that an execution unit makes to 
the data port

• 90 percent of peak last level cache bandwidth 
(GB/s)

• For base FFT kernels

• On Intel® Processor Graphics we recommend 
reading up to 4x32-bit data per work item

• 2x32-bit was a good balance of 
performance and code complexity

• Input signal in column major order

23
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Improving Kernel Performance

• Eliminate the use of shared local 
memory and barriers

• Maximize device thread occupancy

• Reduced code complexity

• Code can be tuned for various 
architectures

• Perform bit reversal in registers

• Reduced penalty

• Preprocessor eliminates index math

• Math transcendentals versus 
lookup table (LUT)

• For the intermediary twiddle factors

• Math transcendentals require FRM 
for performance  poor accuracy

• LUT in global memory

• FRM-agnostic

• <10 percent slower than sin/cos

• Very good accuracy

24
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Improving Kernel Performance

• Fuse two or more kernels

• Straightforward for two consecutive 
base FFTs of the same length:

• 8x8, 16x16, 32x32

• Kernels become function calls with a 
barrier in between

• Workgroup size increased to account 
for data dependencies

• Can do 64-point FFT and 256-point 
FFT but can’t generalize to any FFT 
length

• Increase work per work item

• Straightforward change due to the 
reduced complexity of our code

• By itself it doesn’t lead to 
performance gains

• 2x work per work item coupled with 
kernel fusing leads to 15–30 percent 
performance gains for 64-point FFT 
and 256-point FFT

25
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Results

• clFFT is an excellent implementation

• genFFT beats clFFT for:

• 8, 16, and 32-FFT by more than 1.5x

• 8k-FFT by more than 2x

• But penalty for each additional kernel

• 64 (8x8), 2k (32x8x8), and so on

• clFFT much better at fusing FFTs

• Big penalty at 8k

• genFFT supports cl_half

• Additional performance gains

• There’s still room for improvement

26

Relative performance of genFFT vs clFFT on
Intel® HD Graphics 530 capped @ 750 MHz
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Results

• clFFT is an excellent implementation

• genFFT beats clFFT for:

• 8, 16, and 32-FFT by more than 1.5x

• 8k-FFT by more than 2x

• But penalty for each additional kernel

• 64 (8x8), 2k (32x8x8), and so on

• clFFT much better at fusing FFTs
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Relative performance of genFFT vs clFFT on
Intel® HD Graphics 530 capped @ 750 MHz
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Results

• clFFT is an excellent implementation

• genFFT beats clFFT for:

• 8, 16, and 32-FFT by more than 1.5x

• 8k-FFT by more than 2x

• But penalty for each additional kernel

• 64 (8x8), 2k (32x8x8), and so on

• clFFT much better at fusing FFTs

• Big penalty at 8k

• genFFT supports cl_half

• Additional performance gains

• There’s still room for improvement

28

Relative performance of genFFT vs clFFT on
Intel® HD Graphics 530 capped @ 750 MHz

64 2k
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Conclusion

• Can be tuned for

• Variable SIMD size

• Available register space

• Compiler ability to promote private memory to 
registers

• Any combination of global-local sizes

• Avoids use of shared local memory and 
barriers

• Reduced code complexity

• Potentially better performance portability

• Cache-friendly implementation

• Penalty from enqueueing many kernels

29
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Future Work

• cl_half performance improvements

• Currently reading 1x32-bit quantities 
per work item while optimum is 4x32-bit

• Investigate other kernel fusing 
methods

• Device-side enqueue

• Intel® Processor Graphics 
improvement opportunity

• Optimize execution of pipelines of 
kernels that reuse buffers

• Expand work to any size 1D FFT and 
2D FFT

30
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