
OpenCL caffe: Accelerating and enabling a
cross platform machine learning framework

Junli Gu gujunli@gmail.com
Yibing Liu (Tsinghua University)

Yuan Gao
Maohua Zhu (UCSB)

Presented by Hugh Perkins (ASAPP)

Deep learning brings challenges to system design

– Deep Learning: DNN model + Big Data
• Complex model: millions to billions of parameters

• Big Data input: OCR: 100M, Speech: 10B, CTR: 100B

– System is the final enabler
• Model training: takes weeks on CPU + GPU clusters

• Model deployment: trained model deployed for various application scenarios

DNN
model

Big Data
input

Recognition
results

DNNs Everywhere!

Supercomputers! Datacenters! Tablets, smartphones! Wearable devices!

 IoTs!

1000s GPUs! 100k-1m servers! 700m (in China)! Billions?!

Supercomputer used for training!

Trained DNNs then deployed to data centers (cloud),

smartphones, and even wearables and IoTs!

Functionality Offline DNN training Deploy DNN on cloud
Deploy mobile DNN

apps
Deploy on Wearable and loTs

H/W systems CPU + GPU cluster
CPU clusters or CPU+GPU

clusters
ARM/GPU/SOC ARM/Soc/FPGA

Scale Small scale (hundreds) 100k-1M 700M billions

Opportunities for OpenCL: cross platform DNN
deployment

 Current trend: DNN will be everywhere.

 Cross platform compatibility is becoming a challenge for internet giants.

 However most DNN frameworks are based on CUDA: closed format, limiting the
deployment breadth of DNN systems.

The goal of OpenCL caffe

• Hierarchical framework that serves as machine learning OS

• Software level

‒ machine learning SDK and

APIs

‒ CNN, MLP, RNN, LSTM etc.

• Hardware level

‒ hardware resources

allocation and utilizations

‒ optimized DNN and math

libraries

• Workload partition

‒ CPU: data processing and

main loop iteration

‒ GPU: major DNN kernel

computation
Original CUDA caffe from UC. Berkeley: https://github.com/BVLC/caffe

Two phase strategies

• Phase one: OpenCL backend porting and analysis
– It is not a straightforward engineering porting, algorithm convergence

might be destroyed

– Re-architecture due to key difference between CUDA and OpenCL

• Phase two: OpenCL caffe performance optimizations
– Given the algorithm correctness, improve the performance

– Current BLAS libraries are not optimized for DNN computing, why and
how to improve without modifying BLAS?

OpenCL Caffe Framework

• Hybrid CPU and GPU implementation

– Each layer

• CAFFE is most popular in industry these
days

– Complexity:

– ~70k lines of code

– Originally designed for C++ & CUDA

• Seamless switch between

CPU/GPU

layers

Accuracy_layer Euclidean_loss_layer

Hinge_loss_layer Infogain_loss_layer

Loss_layer Memory_data_layer

Multinomial_logist
ic_loss_layer

Neuron_layer

Data_layer

Bnil_layer

Concat_layer

Conv_layer

dropout_layer

Eltwise_product_layer

Flatten_layer

Hdf5_data_layer

Hdf5_output_layer

Im2col_layer

Image_data_layer

Inner_product_layer

Lrn_layer

Pooling_layer

Power_layer

Relu_layer

Sigmoid_cross_entropy_los
s_layer

Sigmoid_layer

Softmax_layer Softmax_loss_layer

Split_layer

Tanh_layer

Window_data_layer

Prototype Training Deployment

Forward_gpu Backward_gpu

MaxPoolForwardfloat

AvePoolFowardfloat AvePoolBackwardfloat

MaxPoolBackwardfloat

Forward_gpu Backward_gpu

Im2col_gpu

Caffe_gpu_gemm Caffe_gpu_gemv

col2im_gpu

Forward_gpu Backward_gpu

ReLUForwardfloat ReLUBackwardfloat

Forward_gpu Backward_gpu

Caffe_gpu_gemm Caffe_gpu_gemv

Forward_gpu

Kernel_get_maxfloat Caffe_gpu_gemmKernel_softmax_divfloat Caffe_gpu_gemv

Im2col_gpu Col2im_gpu

Caffe_gpu_gemm Caffe_gpu_gemv Caffe_gpu_axpy

Caffe_gpu_axpby

Caffe_gpu_scal

Caffe_gpu_dot Caffe_gpu_asum Caffe_gpu_scale

Caffe_gpu_axpy

OpenCL porting challenges and re-architecturing

• Memory layout & data coherence

– mutable data structures

– Optimal buffer allocation for each layer

• Hide data transfer to the underlying hardware layers

• Added extra OpenCL wrapper layer compared to CUDA

• Hide messy clSetArg etc stuff

Layer 3: GPU kernels

Layer 2:OpenCL wrappers

Layer 1: C++ machine learning interfaces

Caffe_lrn Caffe_pool

Caffe_max Caffe_relu

FORWARD

BACKWARD

D
ata

 la
ye

r

C
o

n
vo

lu
tio

n
 laye

r [5
x5

]

R
elu

 laye
r

C
o

n
vo

lu
tio

n
 laye

r [5
x5

]

P
o

o
lin

g laye
r [3

x3
,strid

e
 2

]

R
elu

 laye
r

C
o

n
vo

lu
tio

n
 laye

r [5
x5

]

P
o

o
lin

g laye
r [3

x3
,strid

e
 2

]

R
elu

 laye
r

In
n

er P
ro

d
u

ct

In
n

er P
ro

d
u

ct

So
ft M

ax +
 Lo

gLo
ss

P
o

o
lin

g laye
r [3

x3
,strid

e
 2

]

Layer wise porting to guarantee correctness

• DNN is a deep layered structure, algorithm convergence is fragile. Gradient
check is well known challenge.
– Local correctness: unit test

– Global correctness: comparing the convergence curves with CPU/CUDA baseline

When port conv layers, only conv layers are
in OpenCL, other layers are in CPU

OpenCL backend bottleneck analysis

• OpenCL's online compilation frequently calls clBuildProgram

– Too many DNN kernels to create!

• DNN falls into BLAS’ poor performance area

– Irregular tall and skinny matrix sizes from different layers

– Bottleneck exists for all BLAS implementations, cuBLAS, clBLAS etc.

– clBLAS is 3-5x slower than cuBLAS, the biggest performance gap to
catch up

63 clbuildProgram calls!
Takes up 68% of time

0

50

100

150

200

250

300

350

400

R9 Fury GTX 980
im

ag
es

/s

DNN training speed

OpenCL backend bottleneck analysis

• OpenCL‘s online compilation frequently calls clBuildProgram

– Too many DNN kernels to create!

• DNN falls into BLAS' poor performance area

– Irregular tall and skinny matrix sizes from different layers

– Bottleneck exists for all BLAS implementations, cuBLAS, clBLAS etc.

– clBLAS is 3-5x slower than cuBLAS, the biggest performance gap to
catch up

0
200
400
600
800

1000
1200
1400
1600

P
e

rf
o

rm
an

ce
(G

Fl
o

p
/s

)

Matrix Sizes for each layer

DNN per layer benchmark: AlexNet model

cuda

ocl

AMD R9 Fury vs. GTX980
1. peak performance 7.2 vs. 4.6 TFLOPS
2. OpenCL caffe is 6x slower than cuda caffe

OpenCL caffe performance optimizations

• Avoid OpenCL online compilation overheads

– Precompile and save the kernels

– Works if hardware does not change

• Boost data parallelism

– Batched manner data layout transformation

– To bring DNN data size to better performance areas

• Boost task parallelism

– Multiple command queues

– Increase concurrent tasks

Batched data layout transformation optimization

• Batched data layout scheme

– Design pipeline to pack small
matrix into bigger ones

– Increase data parallelism

– Release GPU’s computing power

• Notes

– Optimization applies to general
machine learning framework

– When integrated within

sgemm, called batched sgemm

Batched size

Org size

• Batched transformation significantly unrolls the matrix size

– Bigger matrix, more regular

– M, N,K can be aligned with 4/8/16/32 (BLAS preferred sizes)

– Forward propogation, M scaled up; backward propogation, N,K scaled
up (algorithm limitations)

• Optimal batched number

– depending on H/W properties and input data size

– 16 or 32 on AMD GPUs for ImageNet data set

Batched data layout transformation optimization

Layers Original M, N, K Unrolled M’, N’, K’ speedup

conv1 3025, 96, 363 48400, 96, 363 11

conv2 729, 128, 1200 11664, 128, 1200 12

conv3 169, 384, 2034 2704, 384, 2034 10

conv4 169, 192, 1728 2704, 192, 1728 9

conv5 169, 128, 1728 2704, 128, 1728 16

This is matrix size for forward propagation

Boost task parallelism

• The nature of workload imbalance among DNN layers

• Luckily, we can make use of model parallelism

• Performance improvement depends on layer structure, data size and
hardware resources.

Command
queue 1

Command
queue 2

Queue1 and queue2 run concurrently to
improve GPU utilization

Performance evaluation

– OpenCL batched vs clBLAS
• 4.5x speedup without modifying clBLAS

– OpenCL vs CUDA caffe (apple to apple)
• Similar performance

– OpenCL vs cuDNN v2
• 2x gap

• Potential to catch with low

-level hardware optimization

Conclusions

• OpenCL caffe
– To enable a cross platform DNN framework

• Optimize towards competitive performance
– Data parallelism: batched manner data layout transformation

– Task parallelism: make use of model parallelsim

– 4.5x speedup on top of clBLAS library

• Existing challenges of OpenCL in cross-platform
– Differences of various hardware manufacture extensions

– Queueing efficiency, command queue synchronization overheads, runtime
efficiency

– Low level hardware optimizaiton tool chain for highly optimized machine
learning libraries

OpenCL Caffe is at: https://github.com/gujunli/OpenCL-caffe

https://github.com/gujunli/OpenCL-caffe

