

OpenCL caffe: Accelerating and enabling a cross platform machine learning framework

Junli Gu gujunli@gmail.com
Yibing Liu (Tsinghua University)
Yuan Gao
Maohua Zhu (UCSB)
Presented by Hugh Perkins (ASAPP)

Deep learning brings challenges to system design

- Deep Learning: DNN model + Big Data
- **Complex model**: millions to billions of parameters
- Big Data input: OCR: 100M, Speech: 10B, CTR: 100B
- System is the final enabler
- Model training: takes weeks on CPU + GPU clusters
- Model deployment: trained model deployed for various application scenarios

Opportunities for OpenCL: cross platform DNN deployment

- Current trend: DNN will be everywhere.
- Cross platform compatibility is becoming a challenge for internet giants.
- However most DNN frameworks are based on CUDA: closed format, limiting the deployment breadth of DNN systems.

The goal of OpenCL caffe

Hierarchical framework that serves as machine learning OS

Software level

- machine learning SDK and
 APIs
- CNN, MLP, RNN, LSTM etc.

Hardware level

- hardware resources
 allocation and utilizations
- optimized DNN and math
 libraries

Workload partition

- CPU: data processing and main loop iteration
- GPU: major DNN kernel computation

Original CUDA caffe from UC. Berkeley: https://github.com/BVLC/caffe

Two phase strategies

- Phase one: OpenCL backend porting and analysis
 - It is not a straightforward engineering porting, algorithm convergence might be destroyed
 - Re-architecture due to key difference between CUDA and OpenCL

- Phase two: OpenCL caffe performance optimizations
 - Given the algorithm correctness, improve the performance
 - Current BLAS libraries are not optimized for DNN computing, why and how to improve without modifying BLAS?

OpenCL Caffe Framework

layers

Hybrid CPU and GPU implementation

Each layer
 CAFFE is most popular in industry these

days

– Complexity:

~70k lines of code

Originally designed for C++ & CUDA

 Seamless switch between CPU/GPU

Prototype

Training

Deployment

OpenCL porting challenges and re-architecturing

- Memory layout & data coherence
 - mutable data structures
 - Optimal buffer allocation for each layer
- Hide data transfer to the underlying hardware layers
- Added extra OpenCL wrapper layer compared to CUDA

Layer 3: GPU kernels

Layer wise porting to guarantee correctness

- DNN is a deep layered structure, algorithm convergence is fragile. Gradient check is well known challenge.
 - Local correctness: unit test
 - Global correctness: comparing the convergence curves with CPU/CUDA baseline

OpenCL backend bottleneck analysis

- OpenCL's online compilation frequently calls clBuildProgram
 - Too many DNN kernels to create!
- DNN falls into BLAS' poor performance area
 - Irregular tall and skinny matrix sizes from different layers
 - Bottleneck exists for all BLAS implementations, cuBLAS, clBLAS etc.
 - clBLAS is 3-5x slower than cuBLAS, the biggest performance gap to catch up

OpenCL backend bottleneck analysis

- OpenCL's online compilation frequently calls clBuildProgram
 - Too many DNN kernels to create!
- DNN falls into BLAS' poor performance area
 - Irregular tall and skinny matrix sizes from different layers
 - Bottleneck exists for all BLAS implementations, cuBLAS, clBLAS etc.

 clBLAS is 3-5x slower than cuBLAS, the biggest performance gap to catch up

AMD R9 Fury vs. GTX980

R9 Fury

1. peak performance 7.2 vs. 4.6 TFLOPS

DNN training speed

400 350

300

250

200

150

100

50

images/s

cuda

ocl

2. OpenCL caffe is 6x slower than cuda caffe

GTX 980

OpenCL caffe performance optimizations

Avoid OpenCL online compilation overheads

- Precompile and save the kernels
- Works if hardware does not change

Boost data parallelism

- Batched manner data layout transformation
- To bring DNN data size to better performance areas

Boost task parallelism

- Multiple command queues
- Increase concurrent tasks

Batched data layout transformation optimization

Batched data layout scheme

- Design pipeline to pack small matrix into bigger ones
- Increase data parallelism
- Release GPU's computing power
- Notes
 - Optimization applies to general machine learning frameworkg size
 - When integrated within
 sgemm, called batched sgemm

 Batched conv
 unrolling

Batched size

Batched data layout transformation optimization

Batched transformation significantly unrolls the matrix size

- Bigger matrix, more regular
- M, N,K can be aligned with 4/8/16/32 (BLAS preferred sizes)
- Forward propogation, M scaled up; backward propogation, N,K scaled up (algorithm limitations)

Optimal batched number

- depending on H/W properties and input data size
- 16 or 32 on AMD GPUs for ImageNet data set

Layers	Original M, N, K	Unrolled M', N', K'	speedup
conv1	3025 , 96, 363	48400 , 96, 363	11
conv2	729 , 128, 1200	11664 , 128, 1200	12
conv3	169 , 384, 2034	2704 , 384, 2034	10
conv4	169 , 192, 1728	2704 , 192, 1728	9
conv5	169 , 128, 1728	2704 , 128, 1728	16

This is matrix size for forward propagation

Boost task parallelism

- The nature of workload imbalance among DNN layers
- Luckily, we can make use of model parallelism

Performance improvement depends on layer structure, data size and

Performance evaluation

- OpenCL batched vs clBLAS
 - 4.5x speedup without modifying clBLAS
- OpenCL vs CUDA caffe (apple to apple)
 - Similar performance
- OpenCL vs cuDNN v2
 - 2x gap
 - Potential to catch with low
 - -level hardware optimization

Conclusions

- OpenCL caffe
 - To enable a cross platform DNN framework
- Optimize towards competitive performance
 - Data parallelism: batched manner data layout transformation
 - Task parallelism: make use of model parallelsim
 - 4.5x speedup on top of clBLAS library
- Existing challenges of OpenCL in cross-platform
 - Differences of various hardware manufacture extensions
 - Queueing efficiency, command queue synchronization overheads, runtime efficiency
 - Low level hardware optimizaiton tool chain for highly optimized machine learning libraries

OpenCL Caffe is at: https://github.com/gujunli/OpenCL-caffe