
Alexei Katranov

IWOCL '16, April 21, 2016, Vienna, Austria

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Hardware: customization, integration, heterogeneity

Multicore CPU +
integrated units for
graphics, media and

compute

Discrete co-processors
and accelerators

FPGAs, fixed function
devices, domain-specific
compute engines, etc…

Intel®
Processor
Graphics

CPU CPU

CPU CPU

Diverse and heterogeneous environments
with multiple compute resources

2

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Threading Building Blocks (Intel® TBB)

 Widely used C++ template library

 Rich feature set for general purpose
parallelism

 For Windows*, Linux*, OS X*, Android*, etc.

 Both commercial and open-source licenses

 Commercial support for Intel® Atom™, Core™,
Xeon® processors, and for Intel® Xeon Phi™
coprocessors

 Community contributions for non-Intel
architectures

http://threadingbuildingblocks.org

http://software.intel.com/intel-tbb

3

https://software.intel.com/intel-tbb

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Rich Feature Set for Parallelism

Generic Parallel
Algorithms

Efficient scalable way
to exploit the power

of multi-core without
having to start from

scratch

Concurrent Containers

Concurrent access, and a scalable alternative to
serial containers with external locking

Task Scheduler

Sophisticated work scheduling engine
that empowers parallel algorithms

and the flow graph

Threads

OS API
wrappers

Miscellaneous

Thread-safe
timers and

exception classes

Memory Allocation

Scalable memory manager and false-sharing free allocators

Synchronization Primitives

Atomic operations, a variety of mutexes with
different properties, condition variables

Flow Graph

A set of classes to
express parallelism

as a graph of
compute

dependencies and/or
data flow

Parallel algorithms and data structures

Threads and synchronization

Memory allocation and task scheduling

Thread Local
Storage

Unlimited number
of thread-local

variables

4

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

 Intel TBB Flow Graph is an abstraction built
on top of TBB task scheduler API

– Like an additional programming model

– Explicitly defined control and data
dependencies between computations

– Parallelism is automatically extracted

 Intel TBB flow graph is targeted to
multicore shared memory systems.

Intel TBB Flow Graph at glance
Graph object

Graph node

Edge

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

tbb::flow::continue_node< tbb::flow::continue_msg >

w(g, [](const continue_msg &) { std::cout << “World\n“; });

Hello World Example

Users create nodes and edges, interact with the graph and wait for it to
complete

tbb::flow::graph g;

tbb::flow::make_edge(h, w);

tbb::flow::continue_node< tbb::flow::continue_msg >

h(g, [](const continue_msg &) { std::cout << “Hello “; });

h.try_put(continue_msg());

g.wait_for_all();

f() f()

h w

7

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

 TBB flow graph as a coordination layer

 Be the glue that connects hetero HW and SW
IP together

 Expose parallelism between blocks; simplify
integration

8

Idea of Heterogeneous Flow Graph

Device 1

Device 2

Device 3

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

OpenCL™ node

Core functionality:

 enumerate & query OpenCL™ devices

 select a device to be used for program
execution

 transfer data to/from the device

 execute a given kernel there

 support efficient kernel chaining (no
excessive data transfer)

OpenCL™ node

Host node

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Hello World example for OpenCL node
// A graph with OpenCL support.

opencl_graph g;

const char str[] = "Hello, World!";

// OpenCL buffer for the string

opencl_buffer<cl_char> b(g, sizeof(str));

// Copy the string to the buffer

std::copy_n(str, sizeof(str), b.begin());

// A node that outputs the content of an incoming buffer

opencl_node<tuple<opencl_buffer<cl_char>>> clPrint(g, "hello_world.cl", "print");

k.set_ndranges({1});

// Send the buffer as the node input

input_port<0>(clPrint).try_put(b);

// Wait for work completeion.

g.wait_for_all();

// hello_world.cl

kernel void print(global char *str) {

printf("OpenCL says '");

for (; *str; ++str) printf("%c", *str);

printf("'\n");

}

11

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

OpenCL node pipeline example

other nodes
in flow graph

other nodes
in flow graph

b1

b2

b3

b1 b1

12

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

typedef opencl_buffer<cl_int> cl_buffer_t;

typedef opencl_node < tuple<cl_buffer_t, cl_buffer_t> > cl_node_t;

// Create nodes

cl_node_t cl_mul(g, "program.cl", "mul");

cl_node_t cl_add(g, "program.cl", "add");

function_node_t f(g, unlimited, [](const cl_buffer_t &t) {...});

// Create dependencies between nodes

make_edge(cl_mul, cl_add);

make_edge(cl_add, f);

// Put buffers to the graph

cl_buffer_t b1(g, N), b2(g, N), b3(g, N);

input_port<0>(cl_mul).try_put(b1);

input_port<1>(cl_mul).try_put(b2);

input_port<1>(cl_add).try_put(b3);

OpenCL node pipeline
example

13

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Under the hood

Real workYour code

OpenCL intialization
1. Query the available devices
2. Create context
3. Create queue

Create a kernel:
1. Prepare the list of devices
2. Read file
3. Prepare program
4. Build program
5. Print error if observed
6. Get a kernel

cl_node_t cl_mul

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Real workYour code

14

Under the hood

cl_node_t cl_mul

cl_node_t cl_add

OpenCL intialization

Create a kernel

Create a kernel

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Real workYour code

15

Under the hood

cl_node_t cl_mul

cl_node_t cl_add

OpenCL intialization

Create a kernel

Create a kernel

cl_buffer_t b1,b2,b3 Create a buffer

Create a buffer

Create a buffer

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Work in parallel

16

Under the hood

Real workYour code

cl_node_t cl_mul

cl_node_t cl_add

OpenCL init

Kernel

cl_buffer_t b1,b2,b3 Buffer

x2

x3

cl_mul<0>.put(b1) Send msg Move data to device

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Work in parallel

17

Under the hood

Real workYour code

cl_mul<0>.put(b1) Send msg Move data to device

cl_mul<1>.put(b2) Send msg Move data to device

Run kernel “cl_mul”
1. Set arguments
2. Enqueue kernel
3. Put “b1” to “cl_add”

... ...

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Work in parallel

18

Under the hood

Real workYour code

Move data to device

cl_mul<1>.put(b2) Send msg Move data to device

... ...

Run kernel “cl_mul”

cl_add<1>.put(b3)

Sync with previous kernel
“cl_mul”

Run kernel “cl_add”

Send msg

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Work in parallel

19

Under the hood

Real workYour code

Move data to device

... ...

cl_add<1>.put(b3)

Sync with previous kernel
“cl_mul”

Run kernel “cl_add”

Send msg

Sync with previous kernel
“cl_add”

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Work in parallel

20

Under the hood

Real workYour code

Move data to device

... ...

cl_add<1>.put(b3)

Sync with previous kernel
“cl_mul”

Run kernel “cl_add”

Send msg

Sync with previous kernel
“cl_add”

Move data and run “f”

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Real work

OpenCL intialization
1. Query the available devices
2. Create context
3. Create queue

Create a kernel:
1. Prepare the list of devices
2. Read file
3. Prepare program
4. Build program
5. Print error if observed
6. Get a kernel

Work in parallel

21

Under the hood

Your code

cl_node_t cl_mul

cl_node_t cl_add

cl_buffer_t b1,b2,b3

cl_mul<0>.put(b1)

cl_mul<1>.put(b2)

cl_mul<2>.put(b3)

Move data to deviceMove data to deviceMove data to device

Sync with previous kernel
“cl_mul”Run kernel “cl_add”

Sync with previous kernel
“cl_add”

Move data and run “f”

Create a kernel:
1. Prepare the list of devices
2. Read file
3. Prepare program
4. Build program
5. Print error if observed
6. Get a kernel

Run kernel “cl_mul”
1. Set arguments
2. Enqueue kernel
3. Put “b1” to “cl_add”

Send message

Create buffer
Create buffer

Create buffer

Send message
Send message

Run kernel “cl_add”
1. Set arguments
2. Enqueue kernel
3. Put “b1” to “cl_add”

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Real work

OpenCL intialization
1. Query the available devices
2. Create context
3. Create queue

Create a kernel:
1. Prepare the list of devices
2. Read file
3. Prepare program
4. Build program
5. Print error if observed
6. Get a kernel

Work in parallel

22

Under the hood

Your code

cl_node_t cl_mul

cl_node_t cl_add

cl_buffer_t b1,b2,b3

cl_mul<0>.put(b1)

cl_mul<1>.put(b2)

cl_mul<2>.put(b3)

Move data to deviceMove data to deviceMove data to device

Sync with previous kernel
“cl_mul”Run kernel “cl_add”

Sync with previous kernel
“cl_add”

Create a kernel:
1. Prepare the list of devices
2. Read file
3. Prepare program
4. Build program
5. Print error if observed
6. Get a kernel

Run kernel “cl_mul”
1. Set arguments
2. Enqueue kernel
3. Put “b1” to “cl_add”

Send message

Create buffer
Create buffer

Create buffer

Send message
Send message

Run kernel “cl_add”
1. Set arguments
2. Enqueue kernel
3. Put “b1” to “cl_add”

Move data and run “f”

Intel TBB work

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

0%

1%

2%

3%

4%

5%

6%

7%

Desktop system Mobile system

re
la

ti
v

e
 t

im
e

 (
le

ss
 is

 b
e

tt
e

r)

gemm tone_mapping median_filter

24

Configuration info:

Desktop system: Hardware: Intel® Core™ i7-6700K
CPU @4.00Ghz, 16 GB RAM; Software: Microsoft*

Windows 10 Enterprise, Microsoft Visual Studio*

Professional 2015 Update 1, Intel HD Graphics
Driver for Windows 15.40.

Mobile system: Intel Core i5-4300U CPU
@1.90Ghz, 8 GB RAM; Software: Microsoft
Windows 8.1 Enterprise, Microsoft Visual Studio
Professional 2015 Update 2, Intel HD Graphics
Driver for Windows 15.36

OpenCL node overheads

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

OpenCL node overheads in detail

12,7sec
13,4 sec

0

2

4

6

8

10

12

14

16

original opencl_node

ti
m

e
, s

e
c

gemm

10,5 ms

11,0 ms

0

2

4

6

8

10

12

14

original opencl_node

ti
m

e
, m

s

tone_mapping

4,40 ms
4,45 ms

0

1

2

3

4

5

6

original opencl_node

ti
m

e
, m

s

tone_mapping

Mobile system Desktop system

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

Load balancing CPU and GPU

Generic support makes coordinating with
any model easier and efficient

Tile generator

OpenCL™ node (CPU)

OpenCL™ node (GPU)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

Load balancing CPU and GPU

Generic support makes coordinating with
any model easier and efficient

Tile generator

Dispatcher

Available PUs OpenCL™ node (CPU)

OpenCL™ node (GPU)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

Load balancing CPU and GPU

Generic support makes coordinating with
any model easier and efficient

Tile generator

Dispatcher

Available PUs OpenCL™ node (CPU)

OpenCL™ node (GPU)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
29

Load balancing CPU and GPU: performance

0,0

0,2

0,4

0,6

0,8

1,0

1,2

Intel® Core™ i7-6700K Intel® HD Graphics 530 Intel® Core™ i7-6700K +

Intel® HD Graphics 530

re
la

ti
v

e
 t

im
e

 (
le

ss
 is

 b
e

tt
e

r)
Performance of token-based implementation of Fractal

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
31

Summary

Intel TBB flow graph is a coordination layer on heterogeneous systems:

 First class support for OpenCL (opencl_node overview:
https://software.intel.com/en-us/blogs/2015/12/09/opencl-node-overview)

 Reasonable performance overheads (about 1% for 4 ms workload on a
desktop system)

 Declarative “language” to express unstructured parallelism, e.g. token-based
balancing scheme

Intel TBB is open source and freely available on

https://www.threadingbuildingblocks.org/

https://software.intel.com/en-us/blogs/2015/12/09/opencl-node-overview
https://software.intel.com/en-us/blogs/2015/12/09/opencl-node-overview
https://www.threadingbuildingblocks.org/

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
32

Acknowledgments

Our thanks to

 Alexey Kukanov for co-authoring and thorough review

 Michael Voss for material contribution to the features described in this
presentation

 Robert Ioffe for evaluating our work and providing valuable feedback

 Others who helped in developing the functionality

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

33

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
35

Backup: Motivation for data flow and graph-
parallelism Serial implementation (perhaps vectorized)

Loop-parallel implementation

Loop- and graph-parallel implementation

x = A();

y = B(x);

z = C(x);

D(y,z);

